4,238 research outputs found
Social capital and collusion: the case of merchant guilds
Merchant guilds have been portrayed as ‘social networks’ that generated beneficial ‘social capital’ by sustaining
shared norms, effectively transmitting information, and successfully undertaking collective action. This social capital, it is claimed,
benefited society as a whole by enabling rulers to commit to providing a secure trading environment for alien merchants. But
was this really the case? We develop a new model of the emergence, rise and eventual decline of European merchant guilds
which explores the collusive relationship between rulers and guilds, and calls into question the prevailing positive view of merchant guilds.
We then confront the model’s predictions with the available historical data. The empirical evidence strongly support our model and
refutes existing theories. Our findings show that merchant guilds used their social capital for socially harmful as well as beneficial ends
On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities
We demonstrate a close analogy between a viscoelastic medium and an
electrically conducting fluid containing a magnetic field. Specifically, the
dynamics of the Oldroyd-B fluid in the limit of large Deborah number
corresponds to that of a magnetohydrodynamic (MHD) fluid in the limit of large
magnetic Reynolds number. As a definite example of this analogy, we compare the
stability properties of differentially rotating viscoelastic and MHD flows. We
show that there is an instability of the Oldroyd-B fluid that is physically
distinct from both the inertial and elastic instabilities described previously
in the literature, but is directly equivalent to the magnetorotational
instability in MHD. It occurs even when the specific angular momentum increases
outwards, provided that the angular velocity decreases outwards; it derives
from the kinetic energy of the shear flow and does not depend on the curvature
of the streamlines. However, we argue that the elastic instability of
viscoelastic Couette flow has no direct equivalent in MHD.Comment: 21 pages, 3 figures, to be published in J. Fluid Mec
A self-sustaining nonlinear dynamo process in Keplerian shear flows
A three-dimensional nonlinear dynamo process is identified in rotating plane
Couette flow in the Keplerian regime. It is analogous to the hydrodynamic
self-sustaining process in non-rotating shear flows and relies on the
magneto-rotational instability of a toroidal magnetic field. Steady nonlinear
solutions are computed numerically for a wide range of magnetic Reynolds
numbers but are restricted to low Reynolds numbers. This process may be
important to explain the sustenance of coherent fields and turbulent motions in
Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review
Letter
DYCAST: A finite element program for the crash analysis of structures
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors
Perceived characteristics of the environment associated with active travel: development and testing of a new scale
Background
Environmental characteristics may be associated with patterns of physical activity. However, the development of instruments to measure perceived characteristics of the local environment is still at a comparatively early stage, and published instruments are not necessarily suitable for application in all settings. We therefore developed and established the test-retest reliability of a new scale for use in a study of the correlates of active travel and overall physical activity in deprived urban neighbourhoods in Glasgow, Scotland.
Methods
We developed and piloted a 14-item scale based on seven constructs identified from the literature (aesthetics, green space, access to amenities, convenience of routes, traffic, road safety and personal safety). We administered the scale to all participants in a random postal survey (n = 1322) and readministered the scale to a subset of original respondents (n = 125) six months later. We used principal components analysis and Varimax rotation to identify three principal components (factors) and derived summary scores for subscales based on these factors. We examined the internal consistency of these subscales using Cronbach's alpha and examined the test-retest reliability of the individual items, the subscale summary scores and an overall summary neighbourhood score using a combination of correlation coefficients and Cohen's kappa with and without weighting.
Results
Public transport and proximity to shops were the items most likely to be rated positively, whereas traffic volume, traffic noise and road safety for cyclists were most likely to be rated negatively. Three principal components – 'safe and pleasant surroundings', 'low traffic' and 'convenience for walking' – together explained 45% of the total variance. The test-retest reliability of individual items was comparable with that of items in other published scales (intraclass correlation coefficients (ICCs) 0.34–0.70; weighted Cohen's kappa 0.24–0.59). The overall summary neighbourhood score had acceptable internal consistency (Cronbach's alpha 0.72) and test-retest reliability (ICC 0.73).
Conclusion
This new scale contributes to the development of a growing set of tools for investigating the role of perceived environmental characteristics in explaining or mediating patterns of active travel and physical activity
Spinodal Decomposition in High Temperature Gauge Theories
After a rapid increase in temperature across the deconfinement temperature , pure gauge theories exhibit unstable long wavelength fluctuations in
the approach to equilibrium. This phenomenon is analogous to spinodal
decomposition observed in condensed matter physics, and also seen in models of
disordered chiral condensate formation. At high temperature, the unstable modes
occur only in the range , where is on the order
of the Debye screening mass . Equilibration always occurs via spinodal
decomposition for at temperatures and for SU(3) for . For SU(3) at temperatures , nucleation may replace
spinodal decomposition as the dominant equilibration mechanism. Monte Carlo
simulations of SU(2) lattice gauge theory exhibit the predicted phenomena. The
observed value of is in reasonable agreement with a value predicted from
previous lattice measurements of .Comment: minor revisions, 16 pages, 6 figures, RevTe
- …