685 research outputs found

    Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency.

    Get PDF
    Non-synonymous mutations affecting both alleles of PCSK1 (proprotein convertase 1/3) are associated with obesity and impaired prohormone processing. We report a proband who was compound heterozygous for a maternally inherited frameshift mutation and a paternally inherited 474kb deletion that encompasses PCSK1, representing a novel genetic mechanism underlying this phenotype. Although pro-vasopressin is not a known physiological substrate of PCSK1, the development of central diabetes insipidus in this proband suggests that PCSK1 deficiency can be associated with impaired osmoregulation.ISF and SOR were supported by the Wellcome Trust, the MRC Centre for Obesity and Related Disorders and the UK NIHR Cambridge Biomedical Research Centre.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1096719213001145#

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism

    Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty

    Get PDF
    Context: Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. Objective/Main Outcome Measures: We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. Design/Patients: We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. Results: We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p. Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto(+/-) mice displayed a significantly delayed timing of pubertal onset (P <0.05). Conclusions: Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP.Peer reviewe

    FRA2A is a CGG repeat expansion associated with silencing of AFF3

    Get PDF
    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship

    An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication. It carries out this synthesis with high fidelity owing to its intrinsic 3'- to 5'-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3'- to 5'-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.This work was supported by NIHR Exeter Clinical Research Facility through funding for SE and ATH and general infrastructure. The authors thank Michael Day, Annet Damhuis and Richard Gilbert for technical assistance. We thank Karen Knapp for providing the data for the DEXA calculations. SE, ATH, SO are supported by Wellcome Weedon et al. Page 6 Nat Genet. Author manuscript; available in PMC 2014 February 01. Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts Trust Senior Investigator awards. DS and RKS (098498/Z/12/Z) are supported by Wellcome Trust Senior Research Fellowships in Clinical Science. MNW is supported by the Wellcome Trust as part of the WT Biomedical Informatics Hub funding. RO is supported by Diabetes UK. DS, RKS and SO are supported by the UK National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. KJG is supported by the Agency for Science, Technology and Research, Singapore (A*STAR). LAL and MJP are supported by grants NCI-61-6845 and 62-4860

    Functional characterization of obesity-associated variants involving the α and β isoforms of human SH2B1.

    Get PDF
    We have previously reported rare variants in sarcoma (Src) homology 2 (SH2) B adaptor protein 1 (SH2B1) in individuals with obesity, insulin resistance, and maladaptive behavior. Here, we identify 4 additional SH2B1 variants by sequencing 500 individuals with severe early-onset obesity. SH2B1 has 4 alternatively spliced isoforms. One variant (T546A) lies within the N-terminal region common to all isoforms. As shown for past variants in this region, T546A impairs SH2B1β enhancement of nerve growth factor-induced neurite outgrowth, and the individual with the T546A variant exhibits mild developmental delay. The other 3 variants (A663V, V695M, and A723V) lie in the C-terminal tail of SH2B1α. SH2B1α variant carriers were hyperinsulinemic but did not exhibit the behavioral phenotype observed in individuals with SH2B1 variants that disrupt all isoforms. In in vitro assays, SH2B1α, like SH2B1β, enhances insulin- and leptin-induced insulin receptor substrate 2 (IRS2) phosphorylation and GH-induced cell motility. None of the variants affect SH2B1α enhancement of insulin- and leptin-induced IRS2 phosphorylation. However, T546A, A663V, and A723V all impair the ability of SH2B1α to enhance GH-induced cell motility. In contrast to SH2B1β, SH2B1α does not enhance nerve growth factor-induced neurite outgrowth. These studies suggest that genetic variants that disrupt isoforms other than SH2B1β may be functionally significant. Further studies are needed to understand the mechanism by which the individual isoforms regulate energy homeostasis and behavior.This work was supported by the Wellcome Trust (098497/Z/ 12/Z; 077016/Z/05/Z; 096106/Z/11/Z) (to I.S. Farooqi and L.R. Pearce), by the Medical Research Council Metabolic Diseases Unit and NIHR Cambridge Biomedical Research Centre (to I.S. Farooqi, I. Barroso, and S. O’Rahilly) and the Bernard Wolfe Health Neuroscience Fund (I.S. Farooqi); and by NIH grants RO1-DK54222 (to C. Carter-Su), RO1-DK065122 and RO1- DK073601 (to L. Rui), a predoctoral fellowship from the Systems and Integrative Biology Training Grant NIH–T32-GM008322 (to M.E. Doche) and a Rackham Merit Fellowship from the University of Michigan (to R. Joe). Confocal microscopy was performed using the Morphology and Image Analysis Core of the Michigan Diabetes Research Center (NIH grant P60-DK20572).This is the final published version distributed under a Creative Commons Attribution License, which can also be found on the publisher's website at: http://press.endocrine.org/doi/abs/10.1210/en.2014-1264?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubme

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    Get PDF
    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF∼0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10 -3 ), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    Get PDF
    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF∼0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10 -3 ), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies

    Assessment of Acute and Chronic Pharmacological Effects on Energy Expenditure and Macronutrient Oxidation in Humans: Responses to Ephedrine

    Get PDF
    Evidence of active brown adipose tissue in human adults suggests that this may become a pharmacological target to induce negative energy balance. We have explored whole-body indirect calorimetry to detect the metabolic effects of thermogenic drugs through administration of ephedrine hydrochloride and have assessed ephedrine's merits as a comparator compound in the evaluation of novel thermogenic agents. Volunteers randomly given ephedrine hydrochloride 15 mg QID (n = 8) or placebo (n = 6) were studied at baseline and after 1-2 and 14-15 days of treatment. We demonstrate that overnight or 23-hour, 2% energy expenditure (EE) and 5% fat (FO) or CHO oxidation effects are detectable both acutely and over 14 days. Compared to placebo, ephedrine increased EE and FO rates overnight (EE 63 kJ day 2, EE 105 kJ, FO 190 kJ, day 14), but not over 23 h. We conclude that modest energy expenditure and fat oxidation responses to pharmacological interventions can be confidently detected by calorimetry in small groups. Ephedrine should provide reliable data against which to compare novel thermogenic compounds

    Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldWe recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism
    corecore