1,375 research outputs found
Recommended from our members
They all like it hot: faster cleanup of contaminated soil and groundwater
Clean up a greasy kitchen spill with cold water and the going is slow. Us hot water instead and progress improves markedly. So it makes sense that cleanup of greasy underground contaminants such as gasoline might go faster if hot water or steam were somehow added to the process. The Environmental Protection Agency named hundreds of sites to the Superfund list - sites that have been contaminated with petroleum products or petroleum products or solvents. Elsewhere across the country, thousands of properties not identified on federal cleanup lists are contaminated as well. Given that under current regulations, underground accumulations of solvent and hydrocarbon contaminants (the most serious cause of groundwater pollution) must be cleaned up, finding a rapid and effective method of removing them is imperative. In the early 1990`s, in collaboration with the School of Engineering at the University of California at Berkeley, Lawrence Livermore developed dynamic underground stripping. This method for treating underground contaminants with heat is much faster and more effective than traditional treatment methods
Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids
A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions
The Impact of Temperature on Physical Activity Levels During a 12-Week Walking Intervention
Please view abstract in the attached PDF file
Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves
This paper presents a new procedure to derive fragility functions for populations of buildings that relies on the
displacement-based earthquake loss assessment (DBELA) methodology. In the method proposed herein,
thousands of synthetic buildings have been produced considering the probabilistic distribution describing the
variability in geometrical and material properties. Then, their nonlinear capacity has been estimated using the
DBELA method and their response against a large set of ground motion records has been estimated. Global limit
states are used to estimate the distribution of buildings in each damage state for different levels of ground
motion, and a regression algorithm is applied to derive fragility functions for each limit state. The proposed
methodology is demonstrated for the case of ductile and non-ductile Turkish reinforced concrete frames with
masonry infills
Usability of Commercially Available Mobile Applications for Diverse Patients.
BackgroundMobile applications or 'apps' intended to help people manage their health and chronic conditions are widespread and gaining in popularity. However, little is known about their acceptability and usability for low-income, racially/ethnically diverse populations who experience a disproportionate burden of chronic disease and its complications.ObjectiveThe objective of this study was to investigate the usability of existing mobile health applications ("apps") for diabetes, depression, and caregiving, in order to facilitate development and tailoring of patient-facing apps for diverse populations.DesignUsability testing, a mixed-methods approach that includes interviewing and direct observation of participant technology use, was conducted with participants (nâ=â9 caregivers; nâ=â10 patients with depression; and nâ=â10 patients with diabetes) on a total of 11 of the most popular health apps (four diabetes apps, four depression apps, and three caregiver apps) on both iPad and Android tablets.ParticipantsThe participants were diverse: 15 (58 %) African Americans, seven (27 %) Whites, two (8 %) Asians, two (8 %) Latinos with either diabetes, depression, or who were caregivers.Main measuresParticipants were given condition-specific tasks, such as entering a blood glucose value into a diabetes app. Participant interviews were video recorded and were coded using standard methods to evaluate attempts and completions of tasks. We performed inductive coding of participant comments to identify emergent themes.Key resultsParticipants completed 79 of 185 (43 %) tasks across 11 apps without assistance. Three themes emerged from participant comments: lack of confidence with technology, frustration with design features and navigation, and interest in having technology to support their self-management.ConclusionsApp developers should employ participatory design strategies in order to have an impact on chronic conditions such as diabetes and depression that disproportionately affect vulnerable populations. While patients express interest in using technologies for self-management, current tools are not consistently usable for diverse patients
A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole
The description of extreme-mass-ratio binary systems in the inspiral phase is
a challenging problem in gravitational wave physics with significant relevance
for the space interferometer LISA. The main difficulty lies in the evaluation
of the effects of the small body's gravitational field on itself. To that end,
an accurate computation of the perturbations produced by the small body with
respect the background geometry of the large object, a massive black hole, is
required. In this paper we present a new computational approach based on Finite
Element Methods to solve the master equations describing perturbations of
non-rotating black holes due to an orbiting point-like object. The numerical
computations are carried out in the time domain by using evolution algorithms
for wave-type equations. We show the accuracy of the method by comparing our
calculations with previous results in the literature. Finally, we discuss the
relevance of this method for achieving accurate descriptions of
extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure
Recommended from our members
Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies
Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies
Recommended from our members
Shallow Drilling In The Salton Sea Region, The Thermal Anomaly
During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough
Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events
This paper proposes a reliability-based framework for quantifying structural robustness considering the occurrence of a major earthquake (mainshock) and subsequent cascading hazard events, such as aftershocks that are triggered by the mainshock. These events can significantly increase the probability of failure of buildings, especially for structures that are damaged during the mainshock. The application of the proposed framework is exemplified through three numerical case studies. The case studies correspond to three SAC steel moment frame buildings of three, nine, and 20 stories, which were designed to pre-Northridge codes and standards. Two-dimensional nonlinear finite-element models of the buildings are developed with the Open System for Earthquake Engineering Simulation framework (OpenSees), using a finite length plastic hinge beam model and a bilinear constitutive law with deterioration, and are subjected to multiple mainshock-aftershock seismic sequences. For the three buildings analyzed herein, it is shown that the structural reliability under a single seismic event can be significantly different from that under a sequence of seismic events. The reliability based robustness indicator shows that the structural robustness is influenced by the extent to which a structure can distribute damage
- âŠ