1,375 research outputs found

    Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids

    Get PDF
    A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions

    The Impact of Temperature on Physical Activity Levels During a 12-Week Walking Intervention

    Get PDF
    Please view abstract in the attached PDF file

    Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves

    Get PDF
    This paper presents a new procedure to derive fragility functions for populations of buildings that relies on the displacement-based earthquake loss assessment (DBELA) methodology. In the method proposed herein, thousands of synthetic buildings have been produced considering the probabilistic distribution describing the variability in geometrical and material properties. Then, their nonlinear capacity has been estimated using the DBELA method and their response against a large set of ground motion records has been estimated. Global limit states are used to estimate the distribution of buildings in each damage state for different levels of ground motion, and a regression algorithm is applied to derive fragility functions for each limit state. The proposed methodology is demonstrated for the case of ductile and non-ductile Turkish reinforced concrete frames with masonry infills

    Usability of Commercially Available Mobile Applications for Diverse Patients.

    Get PDF
    BackgroundMobile applications or 'apps' intended to help people manage their health and chronic conditions are widespread and gaining in popularity. However, little is known about their acceptability and usability for low-income, racially/ethnically diverse populations who experience a disproportionate burden of chronic disease and its complications.ObjectiveThe objective of this study was to investigate the usability of existing mobile health applications ("apps") for diabetes, depression, and caregiving, in order to facilitate development and tailoring of patient-facing apps for diverse populations.DesignUsability testing, a mixed-methods approach that includes interviewing and direct observation of participant technology use, was conducted with participants (n = 9 caregivers; n = 10 patients with depression; and n = 10 patients with diabetes) on a total of 11 of the most popular health apps (four diabetes apps, four depression apps, and three caregiver apps) on both iPad and Android tablets.ParticipantsThe participants were diverse: 15 (58 %) African Americans, seven (27 %) Whites, two (8 %) Asians, two (8 %) Latinos with either diabetes, depression, or who were caregivers.Main measuresParticipants were given condition-specific tasks, such as entering a blood glucose value into a diabetes app. Participant interviews were video recorded and were coded using standard methods to evaluate attempts and completions of tasks. We performed inductive coding of participant comments to identify emergent themes.Key resultsParticipants completed 79 of 185 (43 %) tasks across 11 apps without assistance. Three themes emerged from participant comments: lack of confidence with technology, frustration with design features and navigation, and interest in having technology to support their self-management.ConclusionsApp developers should employ participatory design strategies in order to have an impact on chronic conditions such as diabetes and depression that disproportionately affect vulnerable populations. While patients express interest in using technologies for self-management, current tools are not consistently usable for diverse patients

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Magnetic Resonance

    Get PDF
    Contains research objectives and reports on three research projects

    Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events

    Get PDF
    This paper proposes a reliability-based framework for quantifying structural robustness considering the occurrence of a major earthquake (mainshock) and subsequent cascading hazard events, such as aftershocks that are triggered by the mainshock. These events can significantly increase the probability of failure of buildings, especially for structures that are damaged during the mainshock. The application of the proposed framework is exemplified through three numerical case studies. The case studies correspond to three SAC steel moment frame buildings of three, nine, and 20 stories, which were designed to pre-Northridge codes and standards. Two-dimensional nonlinear finite-element models of the buildings are developed with the Open System for Earthquake Engineering Simulation framework (OpenSees), using a finite length plastic hinge beam model and a bilinear constitutive law with deterioration, and are subjected to multiple mainshock-aftershock seismic sequences. For the three buildings analyzed herein, it is shown that the structural reliability under a single seismic event can be significantly different from that under a sequence of seismic events. The reliability based robustness indicator shows that the structural robustness is influenced by the extent to which a structure can distribute damage
    • 

    corecore