640 research outputs found
Estimating jet power in proton blazar models
© Copyright © 2002. Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Submitted to Cornell University’s online archive www.arXiv.org in 2002 by Ray Protheroe. Post-print sourced from www.arxiv.org.We discuss the various contributions to the jet luminosity in proton blazar models of active galactic nuclei and describe a method of estimating the jet luminosity from the observed spectral energy distribution (SED) and the fitted model parameters. We apply this to a synchrotron proton blazar (SPB) model for Markarian 501.R.J. Protheroe, A. Mück
Statistics of Cosmological Black Hole Jet Sources: Blazar Predictions for GLAST
A study of the statistics of cosmological black-hole jet sources is applied
to EGRET blazar data, and predictions are made for GLAST. Black-hole jet
sources are modeled as collimated relativistic plasma outflows with radiation
beamed along the jet axis due to strong Doppler boosting. The comoving rate
density of blazar flares is assumed to follow a blazar formation rate (BFR),
modeled by analytic functions based on astronomical observations and fits to
EGRET data. The redshift and size distributions of gamma-ray blazars observed
with EGRET, separated into BL Lac object (BL) and flat spectrum radio quasar
(FSRQ) distributions, are fit with monoparametric functions for the
distributions of the jet Lorentz factor \Gamma, comoving directional power
l'_e, and spectral slope. A BFR factor ~10 x greater at z ~ 1 than at present
is found to fit the FSRQ data. A smaller comoving rate density and greater
luminosity of BL flares at early times compared to the present epoch fits the
BL data. Based on the EGRET observations, ~1000 blazars consisting of ~800
FSRQs and FR2 radio galaxies and ~200 BL Lacs and FR1 radio galaxies will be
detected with GLAST during the first year of the mission. Additional AGN
classes, such as hard-spectrum BL Lacs that were mostly missed with EGRET,
could add more GLAST sources. The FSRQ and BL contributions to the EGRET
gamma-ray background at 1 GeV are estimated at the level of ~10 - 15% and ~2 -
4%, respectively. EGRET and GLAST sensitivities to blazar flares are considered
in the optimal case, and a GLAST analysis method for blazar detection is
outlined.Comment: 17 pages, 9 figures, ApJ, in press, v.660, May 1, 2007 (minor changes
from previous version
Recommended from our members
Klotho controls the brain-immune system interface in the choroid plexus.
Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klotho flox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis
Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons.
Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons
Point-like gamma ray sources as signatures of distant accelerators of ultra high energy cosmic rays
We discuss the possibility of observing distant accelerators of ultra high
energy cosmic rays in synchrotron gamma rays. Protons propagating away from
their acceleration sites produce extremely energetic electrons during
photo-pion interactions with cosmic microwave background photons. If the
accelerator is embedded in a magnetized region, these electrons will emit high
energy synchrotron radiation. The resulting synchrotron source is expected to
be point-like and detectable in the GeV-TeV energy range if the magnetic field
is at the nanoGauss level.Comment: 4 pages 2 figures. To be published in PR
The AGASA/SUGAR Anisotropies and TeV Gamma Rays from the Galactic Center: A Possible Signature of Extremely High-energy Neutrons
Recent analysis of data sets from two extensive air shower cosmic ray
detectors shows tantalizing evidence of an anisotropic overabundance of cosmic
rays towards the Galactic Center (GC) that ``turns on'' around eV. We
demonstrate that the anisotropy could be due to neutrons created at the
Galactic Center through charge-exchange in proton-proton collisions, where the
incident, high energy protons obey an power law associated with
acceleration at a strong shock. We show that the normalization supplied by the
gamma-ray signal from EGRET GC source 3EG J1746-2851 -- ascribed to pp induced
neutral pion decay at GeV energies -- together with a very reasonable spectral
index of 2.2, predicts a neutron flux at eV fully consistent
with the extremely high energy cosmic ray data. Likewise, the normalization
supplied by the very recent GC data from the HESS air-Cerenkov telescope at
\~TeV energies is almost equally-well compatible with the eV
cosmic ray data. Interestingly, however, the EGRET and HESS data appear to be
themselves incompatible. We consider the implications of this discrepancy. We
discuss why the Galactic Center environment can allow diffusive shock
acceleration at strong shocks up to energies approaching the ankle in the
cosmic ray spectrum. Finally, we argue that the shock acceleration may be
occuring in the shell of Sagittarius A East, an unusual supernova remnant
located very close to the Galactic Center. If this connection between the
anisotropy and Sagittarius A East could be firmly established it would be the
first direct evidence for a particular Galactic source of cosmic rays up to
energies near the ankle.Comment: 57 pages, 2 figure
Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice
Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system
ATCA radio imaging of the ProPlyD-like objects in the giant HII region NGC 3603
Three cometary-shaped objects in the giant HII region NGC 3603, originally
found and identified as proto-planetary disks (ProPlyDs) by Brandner et al.
2000 using HST+VLT in the optical and near-infrared, have been detected with
the Australia Telescope Compact Array (ATCA) in the radio continuum at 3 and
6cm. All three ProPlyD-like objects are clearly resolved with an extent of a
few arcseconds. The integrated 6cm fluxes are up to 1.3 times higher than the
3cm fluxes with spectral indices averaged over the whole clump between
and -0.5 (), indicating the likely
presence of non-thermal emission in at least some of the sources. All measured
fluxes are at least one order of magnitude higher than those predicted by
Brandner et al. 2000. Due to the unexpectedly large radio luminosities of the
ProPlyD-like features and because the radio emission is extended a
(proto-)stellar origin of the non-thermal emission from a dust enshrouded star
appears unlikely. Instead we propose that magnetized regions within the
envelope of the ProPlyD-like nebulae exist. (abridged)Comment: 25 pages, 10 figures, accepted for publication in ApJ; Fig.1 can be
obtained from [email protected]
- …