659 research outputs found
Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model
Long-term load forecasting plays a vital role for utilities and planners in
terms of grid development and expansion planning. An overestimate of long-term
electricity load will result in substantial wasted investment in the
construction of excess power facilities, while an underestimate of future load
will result in insufficient generation and unmet demand. This paper presents
first-of-its-kind approach to use multiplicative error model (MEM) in
forecasting load for long-term horizon. MEM originates from the structure of
autoregressive conditional heteroscedasticity (ARCH) model where conditional
variance is dynamically parameterized and it multiplicatively interacts with an
innovation term of time-series. Historical load data, accessed from a U.S.
regional transmission operator, and recession data for years 1993-2016 is used
in this study. The superiority of considering volatility is proven by
out-of-sample forecast results as well as directional accuracy during the great
economic recession of 2008. To incorporate future volatility, backtesting of
MEM model is performed. Two performance indicators used to assess the proposed
model are mean absolute percentage error (for both in-sample model fit and
out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table
Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians
BACKGROUND: Identifying species of organisms by short sequences of DNA has been in the center of ongoing discussions under the terms DNA barcoding or DNA taxonomy. A C-terminal fragment of the mitochondrial gene for cytochrome oxidase subunit I (COI) has been proposed as universal marker for this purpose among animals. RESULTS: Herein we present experimental evidence that the mitochondrial 16S rRNA gene fulfills the requirements for a universal DNA barcoding marker in amphibians. In terms of universality of priming sites and identification of major vertebrate clades the studied 16S fragment is superior to COI. Amplification success was 100% for 16S in a subset of fresh and well-preserved samples of Madagascan frogs, while various combination of COI primers had lower success rates.COI priming sites showed high variability among amphibians both at the level of groups and closely related species, whereas 16S priming sites were highly conserved among vertebrates. Interspecific pairwise 16S divergences in a test group of Madagascan frogs were at a level suitable for assignment of larval stages to species (1–17%), with low degrees of pairwise haplotype divergence within populations (0–1%). CONCLUSION: We strongly advocate the use of 16S rRNA as standard DNA barcoding marker for vertebrates to complement COI, especially if samples a priori could belong to various phylogenetically distant taxa and false negatives would constitute a major problem
Effecten van klimaatsverandering op planten in Nederland
Environmental Biology - ol
Effecten van klimaatsverandering op hogere planten in Nederland
Environmental Biology - ol
Interaction between habitat quality and an Allee-like effect in metapopulations
We construct a stochastic patch occupancy metapopulation model that incorporates variation in habitat quality and an Allee-like effect. Using some basic results from stochastic ordering, we investigate the effect of habitat degradation on the persistence of the metapopulation. In particular, we show that for a metapopulation with Allee-like effect habitat degradation can cause a dramatic decrease in the level of persistence while in the absence of an Allee-like effect this decrease is more gradual
- …