197 research outputs found

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    The Crossroads of Glycoscience, Infection, and Immunology

    Get PDF
    Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe. In the context of the host, glycosylation drives cell–cell interactions that initiate and regulate the host response and modulates the effects of antibodies and soluble immune mediators. This perspective reports on a workshop organized jointly by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research in May 2020. The conference addressed the use of emerging glycoscience tools and resources to advance investigation of glycans and their roles in microbe-host interactions, immune-mediated diseases, and immune cell recognition and function. Future discoveries in these areas will increase fundamental scientific understanding and have the potential to improve diagnosis and treatment of infections and immune dysregulation

    The crossroads of glycoscience, infection, and immunology

    Get PDF
    Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe. In the context of the host, glycosylation drives cell-cell interactions that initiate and regulate the host response and modulates the effects of antibodies and soluble immune mediators. This perspective reports on a workshop organized jointly by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research in May 2020. The conference addressed the use of emerging glycoscience tools and resources to advance investigation of glycans and their roles in microbe-host interactions, immune-mediated diseases, and immune cell recognition and function. Future discoveries in these areas will increase fundamental scientific understanding and have the potential to improve diagnosis and treatment of infections and immune dysregulation

    Micro-econometric and Micro-Macro Linked Models: Sequential Macro-Micro Modelling with Behavioral Microsimulations

    Get PDF
    Analyzing the poverty and distributional impact of macro events requires understanding how shocks or policy changes on the macro level affect household income and consumption. It is clear that this poses a formidable task, which of course raises the question of the appropriate methodology to address such questions. This paper presents one possible approach: A sequential methodology that combines a macroeconomic model with a behavioral micro-simulation. We discuss the merits and shortcomings of this approach with a focus on developing country applications with a short to medium run time horizon. - This chapter is a re-print of: Lay, J. (2010). Sequential macro-micro modelling with behavioural microsimulations. International Journal of Microsimulation, 3(1), 24-34

    Confusion and dependence in uses of history

    Get PDF
    Many people argue that history makes a special difference to the subjects of biology and psychology, and that history does not make this special difference to other parts of the world. This paper will show that historical properties make no more or less of a difference to biology or psychology than to chemistry, physics, or other sciences. Although historical properties indeed make a certain kind of difference to biology and psychology, this paper will show that historical properties make the same kind of difference to geology, sociology, astronomy, and other sciences. Similarly, many people argue that nonhistorical properties make a special difference to the nonbiological and the nonpsychological world. This paper will show that nonhistorical properties make the same difference to all things in the world when it comes to their causal behavior and that historical properties make the same difference to all things in the world when it comes to their distributions. Although history is special, it is special in the same way to all parts of the worl

    Real Potential

    Get PDF
    There\u27s a student in my philosophy class who has real potential. I might express this thought in any of the following ways: She is potentially a philosopher ; She is a potential philosopher ; She has the potential to be a philosopher. The first way uses a cognate of potential as an adverb to modify is. The second ways uses potential as an adjective to modify philosopher. However, the third way uses potential as a noun to refer to something that the student has. What kind of thing is this potential? One worry about even asking this question is that this nominalization of the adjective potential suggests a metaphysical picture that is an artifact of language. This is even more strongly suggested by the less ambiguous nominalization potentiality. Once we have the term potentiality, we have a new kind of entity to countenance, and questions about its nature arise. One might argue, just because we use the word potentiality, we should not think that it refers to a thing that someone can have. There is something disingenuous about such an argument. It proceeds as if the adverbial and adjectival uses of potential are unproblematic, and questions only arise with the nominalization. But it is not obvious what it means to potentially be something, or what it means to be a potential something. To say that someone is potentially a philosopher is to talk about a way of being that falls short of actuality. And a potential philosopher is not a kind of philosopher at all. So what is it? Each of the three above formulations is a modal claim. If there is anything philosophical puzzling about a potentiality claim, it is not going to go away by translating it into an equivalent modal claim. In this chapter I defend the existence of potentialities against anti-realist arguments, and make a proposal as to their nature. The proposal, in short, is that potentialities are properties, specifically dispositions, though more needs to be said about properties and dispositions. I will do this in Part I. In Part II, I will address two lines of argument against potentialities: that they are reducible, and that they are causally inert

    Increased Inter-Colony Fusion Rates Are Associated with Reduced COI Haplotype Diversity in an Invasive Colonial Ascidian Didemnum vexillum

    Get PDF
    Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species
    corecore