984 research outputs found

    Ontstaan en morphologie van de Golf van Lo

    Get PDF

    Litostratigrafie van de kwartaire sedimenten in het Oostelijk Kustgebied (België)

    Get PDF
    The composition of the Quaternary surface sediments in the Coastal Area is known in detail since the making of the geological map and especially since the systematic soil survey. The knowledge of the deeper Quaternary sediments however remains still fragmentary .Field work by the Center for Hydrogeological Research at the State University of Ghent has provided new data about the relief of the Tertiary substratum and the lithostratigraphy of the Pleistocene and Holocene sediments of the eastern part of the Coastal Area. A south-north section indicates the existence, in the burried surface of the Tertiary substratum, of two degradation levels (between -17 and -22 and between -8 and -6). Several lithostratigraphic units have been distinguished. The deepest deposit is the gravel-sand Ostend formation of Eemian age. This deposit is covered by the sandy Uitkerke formation of Weichselian age. The Wenduine formation on top of this sand is very heterogeneous; it has been formed during the transition between Pleistocene and Holocene. Along the edge of Inner Flanders the -8 level is overlain by the clayey Meetkerke formation with Hydrobia. In seaward direction this formation becomes sandy when passing laterally into the Houtave formation. The chronostratigraphic relationship between the two formations is not clear although the latter was probably deposited during the Atlantic. They are covered by the sands of the Zuienkerke formation, of which the northern part is also of Atlantic age. During this period and the Subboreal the Nieuwmunster peat was formed. This peat has been covered by the Dunkirk formation, except in the "Moere" of Meetkerke

    O18O and C18O observations of rho Oph A

    Full text link
    Observations of the (N_J=1_1-1_0) ground state transition of O_2 with the Odin satellite resulted in a about 5 sigma detection toward the dense core rho Oph A. At the frequency of the line, 119 GHz, the Odin telescope has a beam width of 10', larger than the size of the dense core, so that the precise nature of the emitting source and its exact location and extent are unknown. The current investigation is intended to remedy this. Telluric absorption makes ground based O_2 observations essentially impossible and observations had to be done from space. mm-wave telescopes on space platforms were necessarily small, which resulted in large, several arcminutes wide, beam patterns. Although the Earth's atmosphere is entirely opaque to low-lying O_2 transitions, it allows ground based observations of the much rarer O18O in favourable conditions and at much higher angular resolution with larger telescopes. In addition, rho Oph A exhibits both multiple radial velocity systems and considerable velocity gradients. Extensive mapping of the region in the proxy C18O (J=3-2) line can be expected to help identify the O_2 source on the basis of its line shape and Doppler velocity. Line opacities were determined from observations of optically thin 13C18O (J=3-2) at selected positions. During several observing periods, two C18O intensity maxima in rho Oph A were searched for in the 16O18O (2_1-0_1) line at 234 GHz with the 12m APEX telescope. Our observations resulted in an upper limit on the integrated O18O intensity of < 0.01 K km/s (3 sigma) into the 26.5" beam. We conclude that the source of observed O_2 emission is most likely confined to the central regions of the rho Oph A cloud. In this limited area, implied O_2 abundances could thus be higher than previously reported, by up to two orders of magnitude.Comment: 7 pages, 6 figures (5 colour), Astronomy & Astrophysic

    Averaging out magnetic forces with fast rf-sweeps in an optical trap for metastable chromium atoms

    Full text link
    We introduce a novel type of time-averaged trap, in which the internal state of the atoms is rapidly modulated to modify magnetic trapping potentials. In our experiment, fast radiofrequency (rf) linear sweeps flip the spin of atoms at a fast rate, which averages out magnetic forces. We use this procedure to optimize the accumulation of metastable chomium atoms into an optical dipole trap from a magneto-optical trap. The potential experienced by the metastable atoms is identical to the bare optical dipole potential, so that this procedure allows for trapping all magnetic sublevels, hence increasing by up to 80 percent the final number of accumulated atoms.Comment: 4 pages, 4 figure

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    Accumulation of chromium metastable atoms into an Optical Trap

    Full text link
    We report the fast accumulation of a large number of metastable 52Cr atoms in a mixed trap, formed by the superposition of a strongly confining optical trap and a quadrupolar magnetic trap. The steady state is reached after about 400 ms, providing a cloud of more than one million metastable atoms at a temperature of about 100 microK, with a peak density of 10^{18} atoms.m^{-3}. We have optimized the loading procedure, and measured the light shift of the 5D4 state by analyzing how the trapped atoms respond to a parametric excitation. We compare this result to a theoretical evaluation based on the available spectroscopic data for chromium atoms.Comment: 7 pages, 5 Figure

    Adaptive optics in high-contrast imaging

    Full text link
    The development of adaptive optics (AO) played a major role in modern astronomy over the last three decades. By compensating for the atmospheric turbulence, these systems enable to reach the diffraction limit on large telescopes. In this review, we will focus on high contrast applications of adaptive optics, namely, imaging the close vicinity of bright stellar objects and revealing regions otherwise hidden within the turbulent halo of the atmosphere to look for objects with a contrast ratio lower than 10^-4 with respect to the central star. Such high-contrast AO-corrected observations have led to fundamental results in our current understanding of planetary formation and evolution as well as stellar evolution. AO systems equipped three generations of instruments, from the first pioneering experiments in the nineties, to the first wave of instruments on 8m-class telescopes in the years 2000, and finally to the extreme AO systems that have recently started operations. Along with high-contrast techniques, AO enables to reveal the circumstellar environment: massive protoplanetary disks featuring spiral arms, gaps or other asymmetries hinting at on-going planet formation, young giant planets shining in thermal emission, or tenuous debris disks and micron-sized dust leftover from collisions in massive asteroid-belt analogs. After introducing the science case and technical requirements, we will review the architecture of standard and extreme AO systems, before presenting a few selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Unfamiliar faces might as well be another species: Evidence from a face matching task with human and monkey faces

    Get PDF
    Humans are good at recognizing familiar faces, but are more error-prone at recognizing an unfamiliar person across different images. It has been suggested that familiar and unfamiliar faces are processed qualitatively differently. But are unfamiliar faces at least processed differently from monkey faces? Here we tested 366 volunteers on a face matching test – two images presented side-by-side with participants judging whether the images show the same identity or two different identities – comparing performance with familiar and unfamiliar human faces, and monkey faces. The results showed that performance was most accurate for familiar faces, and was above chance for monkey faces. Although accuracy was higher for unfamiliar humans than monkeys on different identity trials, there was no unfamiliar human advantage over monkeys on same identity trials. The results give new insights into unfamiliar face processing, showing that in some ways unfamiliar faces might as well be another species
    corecore