1,820 research outputs found

    Ternary nucleation of H_2SO_4, NH_3 and H_2O

    Get PDF
    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case

    The role of surfactants in Köhler theory reconsidered

    No full text
    International audienceAtmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is in the organic compounds that are surface active i.e. they concentrate on droplet surface and decrease droplet surface tension. Gibbsian surface thermodynamics were used to find out how partitioning in binary and ternary aqueous solutions affects the droplet surface tension and the droplet bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate was used as a model compound together with sodium chloride to find out the effect the correct evaluation of surfactant partitioning has on the solute effect (Raoult effect). While the partitioning is known to lead to higher surface tension compared to a case in which partitioning is neglected, the present results show that the partitioning also alters the solute effect, and that the change is large enough to further increase the critical supersaturation and hence decrease the droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solution was studied in order to relate the partitioning to more realistic atmospheric situation and to find out the combined effects of dissolution and partitioning behaviour. The results show that correct partitioning consideration alters the shape of the Köhler curve when compared to a situation in which the partitioning is neglected either completely or in the Raoult effect

    The role of surfactants in Köhler theory reconsidered

    Get PDF
    International audienceAtmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is the organic compounds that are surface active i.e. tend to concentrate on droplet surface and decrease the surface tension. Gibbsian surface thermodynamics was used to find out how partitioning between droplet surface and the bulk of the droplet affects the surface tension and the surfactant bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate (SDS) was used together with sodium chloride to investigate the effect of surfactant partitioning on the Raoult effect (solute effect). While accounting for the surface to bulk partitioning is known to lead to lowered bulk surfactant concentration and thereby to increased surface tension compared to a case in which the partitioning is neglected, the present results show that the partitioning also alters the Raoult effect, and that the change is large enough to further increase the critical supersaturation and hence decrease cloud droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solutions were studied in order to study the partitioning with compounds found in the atmosphere and to find out the combined effects of dissolution and partitioning behavior. The results show that the partitioning consideration presented in this paper alters the shape of the Köhler curve when compared to calculations in which the partitioning is neglected either completely or in the Raoult effect. In addition, critical supersaturation was measured for SDS particles with dry radii of 25-60nm using a static parallel plate Cloud Condensation Nucleus Counter. The experimentally determined critical supersaturations agree very well with theoretical calculations taking the surface to bulk partitioning fully into account and are much higher than those calculated neglecting the partitioning

    Electronic structure of small GaAs clusters

    Get PDF
    The electronic structure of small Ga_xAs_y clusters (x+y≀10) are calculated using the local density method. The calculation shows that even‐numbered clusters tend to be singlets, as opposed to odd‐numbered clusters which are open shell systems. This is in agreement with the experimental observations of even/odd alternations of the electron affinity and ionization potential. In the larger clusters, the atoms prefer an alternating bond arrangement; charge transfers are observed from Ga sites to As sites. This observation is also in agreement with recent chemisorption studies of ammonia on GaAs clusters. The close agreement between theoretical calculations and experimental results, together with the rich variation of electronic properties of GaAs clusters with composition makes GaAs clusters an ideal prototype system for the study of how electronic structure influences chemical reactivity

    CMC is more than a measure of corticospinal tract integrity in acute stroke patients

    Get PDF
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.Peer reviewe

    Phenotype standardization for statin-induced myotoxicity

    Get PDF
    Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.</p
    • 

    corecore