28,092 research outputs found

    Topological Quantum Field Theory and Seiberg-Witten Monopoles

    Get PDF
    A topological quantum field theory is introduced which reproduces the Seiberg-Witten invariants of four-manifolds. Dimensional reduction of this topological field theory leads to a new one in three dimensions. Its partition function yields a three-manifold invariant, which can be regarded as the Seiberg-Witten version of Casson's invariant. A Geometrical interpretation of the three dimensional quantum field theory is also given.Comment: 15 pages, Latex file, no figure

    Bioprocesses

    Get PDF
    The application of remote sensing techniques to the study of eutrophication in natural waters and the location and characterization of fronts is considered. The specific problem to be studied is examined along with the feasibility and capabability of remote sensing techniques for each application

    RF free ultrasonic positioning

    Get PDF
    All wearable centric location sensing technologies must address the issue of clock synchronisation between signal transmitting systems and signal receiving systems. GPS receivers, for example, compensate for synchronisation errors by incorporating a model of the receiver clock offset in the navigation solution. Drift between satellite clocks is also monitored to keep signal data in synch with GPS time. Most ultrasonic positioning systems solve the synchronisation problem by using a second medium for communication between transmitter and receiver devices. The transmitters in these systems emit RF signals (pings) to indicate the transmission of subsequent ultrasound signals (chirps). By subtracting the arrival time of the ping from that of the chirps, the receiver is able to compute the distance to each transmitter. In this paper, we describe an ultrasonic positioning system that does not use RF signals to achieve synchronisation. Instead, it exploits a periodic chirp transmission pattern to model the receiver’s position using chirp reception times exclusively. Not only does the system improve on the accuracy of previous technologies but it also eliminates bulky RF circuitry – a definite advantage for wearable applications where component size and weight are critical for usability.

    The experience of enchantment in human-computer interaction

    Get PDF
    Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    NICMOS observations of high redshift radio galaxies: witnessing the formation of bright elliptical galaxies?

    Full text link
    We present the results of a near infrared imaging program of a sample of 19 radio galaxies with redshift between 1.7 and 3.2, using the NICMOS Camera 2 on the Hubble Space Telescope. The galaxies were observed in H-band which, for 18 of the 19 targets, samples the rest-frame optical emission longwards of the 4000 A break. The images show a wide range of morphologies, from unresolved to compact systems, to systems with substructures such as multiple emission peaks, to systems comprised of several components spread over large areas. The morphologies of 5 of the lowest redshift targets are well represented by a de Vaucouleurs profile, consistent with them being elliptical galaxies. Their average effective radius is a factor of 2 smaller than that of z=1 3CR radio galaxies at similar restframe wavelengths. The near infrared continuum light is generally well aligned with the radio axis and the aligned light has typical V-H colors of around 3.5-4. For several galaxies where WFPC2 images were available, we computed a high resolution map of the optical-to-infrared spectral indices: all multi-component systems present net color gradients between the various clumps. We argue that in these galaxies the continuum emission has probably a stellar origin. Finally in many cases we observe nearby faint objects close to the radio sources. The number density of these faint objects is slightly higher than what is found in the deep NICMOS parallel observations of random fields. These objects also tend to be aligned with the radio sources axis, suggesting that they may be related to the presence of the AGN. (shortened astro-ph version)Comment: To appear in ApJ

    The influence of baryons on the mass distribution of dark matter halos

    Get PDF
    Using a set of high-resolution N-body/SPH cosmological simulations with identical initial conditions but run with different numerical setups, we investigate the influence of baryonic matter on the mass distribution of dark halos when radiative cooling is NOT included. We compare the concentration parameters of about 400 massive halos with virial mass from 101310^{13} \Msun to 7.1×10147.1 \times 10^{14} \Msun. We find that the concentration parameters for the total mass and dark matter distributions in non radiative simulations are on average larger by ~3% and 10% than those in a pure dark matter simulation. Our results indicate that the total mass density profile is little affected by a hot gas component in the simulations. After carefully excluding the effects of resolutions and spurious two-body heating between dark matter and gas particles, we conclude that the increase of the dark matter concentration parameters is due to interactions between baryons and dark matter. We demonstrate this with the aid of idealized simulations of two-body mergers. The results of individual halos simulated with different mass resolutions show that the gas profiles of densities, temperature and entropy are subjects of mass resolution of SPH particles. In particular, we find that in the inner parts of halos, as the SPH resolution increases the gas density becomes higher but both the entropy and temperature decrease.Comment: 8 pages, 6 figures, 1 table, ApJ in press (v652n1); updated to match with the being published versio

    Sums of products of Ramanujan sums

    Full text link
    The Ramanujan sum cn(k)c_n(k) is defined as the sum of kk-th powers of the primitive nn-th roots of unity. We investigate arithmetic functions of rr variables defined as certain sums of the products cm1(g1(k))...cmr(gr(k))c_{m_1}(g_1(k))...c_{m_r}(g_r(k)), where g1,...,grg_1,..., g_r are polynomials with integer coefficients. A modified orthogonality relation of the Ramanujan sums is also derived.Comment: 13 pages, revise

    Nuclear activity and star formation properties of Seyfert 2 galaxies

    Full text link
    In order to characterize the amount of recent or ongoing stellar formation in the circumnuclear region of active galaxies on a statistically sound basis, we have studied the stellar component of the nuclear spectra in three different samples of galaxies, namely Seyfert 2 galaxies (hereafter S2G), star-forming galaxies (SFG) and passive normal galaxies (NG), i.e., no emission lines observed, using Sloan Digital Sky Survey data (SDSS) (Adelman-McCarthy, 2008). The stellar component of the observed spectra has been extracted using STARLIGHT (Cid Fernandes et al., 2004), which fits an observed spectrum with a model (template) spectrum obtained by combining a library of pre-defined simple stellar populations spectra, with distinct ages and metallicities. The resulting template spectra for the different samples of galaxies have been compared to determine the features of the stellar emission component and to evaluate the presence and intensity of the star formation in the nuclear regions of different families of galaxies. From a first qualitative analysis it results that the shape of the Spectral Energy Distribution (SED) of S2G and NG is very similar, while that of SFG is characterized by a strong blue excess. The presence of the 4000 A break in the spectra of S2G and NG together with the lack of a strong blue continuum clearly indicate the absence of ongoing star formation in the circumnuclear regions of S2G and obviously of NG. Anyway traces of a recent star formation history are evident in the spectra of S2G galaxies, which show a 4000 A break systematically shallower than in NG.Comment: Proceeding of the VII Serbian Conference on Spectral Line Shapes in Astrophysic
    corecore