1,586 research outputs found
Treatment of atomic and molecular line blanketing by opacity sampling
An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method
The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure
CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness
Mercury and selenium binding biomolecules in terrestrial mammals (Cervus elaphus and Sus scrofa) from a mercury exposed area
Acknowledgements The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PCC-05-004-2, PAI06-0094, PCI-08-0096, PEII09-0032-5329) and the Ministerio de Economía y Competitividad (CTQ2013-48411-P) for financial support. M.J. Patiño Ropero acknowledges the Junta de Comunidades de Castilla-La Mancha for her PhD. fellowship.Peer reviewedPostprin
Human kin detection
Natural selection has favored the evolution of behaviors that benefit not only one's genes, but also their copies in genetically related individuals. These behaviors include optimal outbreeding (choosing a mate that is neither too closely related, nor too distant), nepotism (helping kin), and spite (hurting non-kin at a personal cost), and all require some form of kin detection or kin recognition. Yet, kinship cannot be assessed directly; human kin detection relies on heuristic cues that take into account individuals' context (whether they were reared by our mother, or grew up in our home, or were given birth by our spouse), appearance (whether they smell or look like us), and ability to arouse certain feelings (whether we feel emotionally close to them). The uncertainties of kin detection, along with its dependence on social information, create ample opportunities for the evolution of deception and self-deception. For example, babies carry no unequivocal stamp of their biological father, but across cultures they are passionately claimed to resemble their mother's spouse; to the same effect, neutral' observers are greatly influenced by belief in relatedness when judging resemblance between strangers. Still, paternity uncertainty profoundly shapes human relationships, reducing not only the investment contributed by paternal versus maternal kin, but also prosocial behavior between individuals who are related through one or more males rather than females alone. Because of its relevance to racial discrimination and political preferences, the evolutionary pressure to prefer kin to non-kin has a manifold influence on society at large
Effect of 475 °C embrittlement on the mechanical properties of duplex stainless steel
The binary iron–chromium alloy embrittles in the temperature range of 280–500 °C limiting its applications to temperatures below 280 °C. The embrittlement is caused by the decomposition of the alloy to chromium-rich phase, α′ and iron-rich phase, α. This phenomenon is termed 475 °C embrittlement as the rate of embrittlement is highest at 475 °C. Primarily the investigations on 475 °C embrittlement were confined to binary iron–chromium alloys and ferritic stainless steels. Duplex stainless steel grades contain varying proportions of ferrite and austenite in the microstructure and the ferritic phase is highly alloyed. Moreover, this grade of steel has several variants depending on the alloy composition and processing route. This modifies the precipitation behaviour and the resulting change in mechanical properties in duplex stainless steels when embrittled at 475 °C as compared to binary iron chromium systems. The precipitation behaviour of duplex stainless steel at 475 °C and the effect on tensile, fracture and fatigue behaviour are reviewed in this article
Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in tropical storm Cora
Observations of rain cells in the remains of a decaying tropical storm were made by Airborne Microwave Radiometers at 19.35,92 and three frequencies near 183 GHz. Extremely low brightness temperatures, as low as 140 K were noted in the 92 and 183 GHz observations. These can be accounted for by the ice often associated with raindrop formation. Further, 183 GHz observations can be interpreted in terms of the height of the ice. The brightness temperatures observed suggest the presence of precipitation sized ice as high as 9 km or more
Rain observations in tropical storm Cora
Passive microwave observations were made in tropical storm Cora at 19.35 and 94GHz. These observations suggest that 94GHz is appropriate for mapping the extent of rain over either land or ocean backgrounds and that some rainfall intensity measurement is also possible
- …