79 research outputs found

    Relevance of the rat lung tumor response to particle overload for human risk assessment—Update and interpretation of new data since ILSI 2000

    Get PDF
    The relevance of particle-overload related lung tumors in rats for human risk assessment following chronic inhalation exposures to poorly soluble particulates (PSP) has been a controversial issue for more than three decades. In 1998, an ILSI (International Life Sciences) Working Group of health scientists was convened to address this issue of applicability of experimental study findings of lung neoplasms in rats for lifetime-exposed production workers to PSPs. A full consensus view was not reached by the Workshop participants, although it was generally acknowledged that the findings of lung tumors in rats following chronic inhalation, particle-overload PSP exposures occurred only in rats and no other tested species; and that there was an absence of lung cancers in PSP-exposed production workers. Since the publication of the ILSI Workshop report in 2000, there have been important new data published on the human relevance issue. A thorough and comprehensive review of the health effects literature on poorly soluble particles/lung overload was undertaken and published by an ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) Task Force in 2013. One of the significant conclusions derived from that technical report was that the rat is unique amongst all species in developing lung tumors under chronic inhalation overload exposures to PSPs. Accordingly, the objective of this review is to provide important insights on the fundamental differences in pulmonary responses between experimentally-exposed rats, other experimental species and occupationally-exposed humans. Briefly, five central factors are described by the following issues. • Interspecies differences in lung responses of rats vs. other rodents, triggering different adverse outcome pathways (AOPs); • Interspecies differences in inhaled particle kinetics in rats vs nonhuman primates and humans triggering differential particle-related pulmonary responses. • Advanced and updated human respiratory tract deposition and retention models allowing more realistic particle translocation/retention estimates. • Differences in morphologies and characterizations of rat vs. human pulmonary tumor types and locations within the respiratory tract. • Comprehensive in-depth analysis of available epidemiological data from PSP production workers that demonstrate no correlation between particle exposures and lung cancers or other non-malignant respiratory diseases. Focusing on these five interrelated/convergent factors clearly demonstrate an inappropriateness in concluding that the findings of lung tumors in rats exposed chronically to high concentrations of PSPs are accurate representations of the risks of lung cancer in PSP-exposed production workers. The most plausible conclusion that can be reached is that results from chronic particle-overload inhalation studies with PSPs in rats have no relevance for determining lung cancer risks in production workers exposed for a working lifetime to these poorly soluble particulate-types

    Sex-specific Aging in Animals: Perspective and Future Directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    Sex-specific aging in animals: Perspective and future directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age‐associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer‐lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well‐characterized processes. In particular, understanding the role of sex‐determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations

    Get PDF
    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells

    Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability

    Get PDF
    Background: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. Results: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. Conclusions: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment – A case study with parabens

    Get PDF
    Parabens are esters of para-hydroxybenzoic acid that have been used as preservatives in many types of products for decades including agrochemicals, pharmaceuticals, food and cosmetics. This illustrative case study with propylparaben (PP) demonstrates a 10-step read-across (RAX) framework in practice. It aims at establishing a proof-of-concept for the value added by new approach methodologies (NAMs) in read-across (RAX) for use in a next-generation risk assessment (NGRA) in order to assess consumer safety after exposure to PP-containing cosmetics. In addition to structural and physico-chemical properties, in silico information, toxicogenomics, in vitro toxicodynamic, toxicokinetic data from PBK models, and bioactivity data are used to provide evidence of the chemical and biological similarity of PP and analogues and to establish potency trends for observed effects in vitro. The chemical category under consideration is short (C1–C4) linear chain n-alkyl parabens: methylparaben, ethylparaben, propylparaben and butylparaben. The goal of this case study is to illustrate how a practical framework for RAX can be used to fill a hypothetical data gap for reproductive toxicity of the target chemical PP

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF
    corecore