115 research outputs found
Statistical HOmogeneous Cluster SpectroscopY (SHOCSY): an optimized statistical approach for clustering of ¹H NMR spectral data to reduce interference and enhance robust biomarkers selection.
We propose a novel statistical approach to improve the reliability of (1)H NMR spectral analysis in complex metabolic studies. The Statistical HOmogeneous Cluster SpectroscopY (SHOCSY) algorithm aims to reduce the variation within biological classes by selecting subsets of homogeneous (1)H NMR spectra that contain specific spectroscopic metabolic signatures related to each biological class in a study. In SHOCSY, we used a clustering method to categorize the whole data set into a number of clusters of samples with each cluster showing a similar spectral feature and hence biochemical composition, and we then used an enrichment test to identify the associations between the clusters and the biological classes in the data set. We evaluated the performance of the SHOCSY algorithm using a simulated (1)H NMR data set to emulate renal tubule toxicity and further exemplified this method with a (1)H NMR spectroscopic study of hydrazine-induced liver toxicity study in rats. The SHOCSY algorithm improved the predictive ability of the orthogonal partial least-squares discriminatory analysis (OPLS-DA) model through the use of "truly" representative samples in each biological class (i.e., homogeneous subsets). This method ensures that the analyses are no longer confounded by idiosyncratic responders and thus improves the reliability of biomarker extraction. SHOCSY is a useful tool for removing irrelevant variation that interfere with the interpretation and predictive ability of models and has widespread applicability to other spectroscopic data, as well as other "omics" type of data
Synthesis and characterization of naphthalimide-functionalized polynorbornenes
ABSTRACT: Highly fluorescent and photostable (2-alkyl)-1H-benzo[de]isoquinoline-1,3(2H)-diones with a polymerizable norbornene scaffold have been synthesized and polymerized using ring-opening metathesis polymerization. The monomers presented herein could be polymerized in a living fashion, using different comonomers and different monomer ratios. All obtained materials showed good film-forming properties and bright fluorescence caused by the incorporated push–pull chromophores. Additionally, one of the monomers containing a methylpiperazine functionality showed protonation-dependent photoinduced electron transfer which opens up interesting applications for logic gates and sensing. GRAPHICAL ABSTRACT: [Image: see text
Ethnic entrepreneurs and online home-based businesses: an exploratory study
This exploratory, qualitative study considers how online home-based businesses offer opportunities for ethnic entrepreneurs to ‘break out’ of traditional highly competitive and low margin sectors. Previous studies have found a positive association between ethnic minorities’ high levels of entrepreneurship and home computer use in ethnic groups. Despite these associations, previous studies have overlooked the particular opportunities offered by home-based online businesses to ethnic entrepreneurs. The study adopts mixed embeddedness as a theoretical lens to guide interviews with 22 ethnic entrepreneurs who have started online home-based businesses in the UK. We find online home-based businesses offer ethnic entrepreneurs novel opportunities to draw on their ethnic advantages and address the constraints they face. The unique affordances of this type of business allow entrepreneurs to develop the necessary IT skills by self-learning and experimentation and to sub-contract more difficult or time consuming aspects to others. The findings also show that, consistent with the theory of mixed embeddedness, whilst the entrepreneurs are influenced by social, economic and institutional forces, online businesses allow them to exert their own agency and provide opportunities to uniquely shape these forces
Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours
Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours
Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons
Metabotropic glutamate (mGlu) receptors have been considered potential targets
for the therapy of experimental parkinsonism. One hypothetical advantage
associated with the use of mGlu receptor ligands is the lack of the adverse
effects typically induced by ionotropic glutamate receptor antagonists, such as
sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3
metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.)
increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein
levels in the mouse brain, as assessed by in situ
hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This
increase was prominent in the striatum, but was also observed in the cerebral
cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF
protein levels progressively increased from 24 to 72 h following LY379268
injection. The action of LY379268 was abrogated by the mGlu2/3 receptor
antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout
mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal
neurons, the increase in GDNF induced by LY379268 required the activation of the
mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as
shown by the use of specific inhibitors of the two pathways. Both in
vivo and in vitro studies led to the conclusion
that neurons were the only source of GDNF in response to mGlu3 receptor
activation. Remarkably, acute or repeated injections of LY379268 at doses that
enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective
against nigro-striatal damage induced by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by
stereological counting of tyrosine hydroxylase-positive neurons in the pars
compacta of the substantia nigra. We speculate that selective mGlu3 receptor
agonists or enhancers are potential candidates as neuroprotective agents in
Parkinson's disease, and their use might circumvent the limitations
associated with the administration of exogenous GDNF
New fluorescent perylene bisimide indicators—a platform for broadband pH optodes
Asymmetric perylene bisimide (PBI) dyes are prepared and are shown to be suitable for the preparation of fluorescence chemosensors for pH. They carry one amino-functional substituent which introduces pH sensitivity via photoinduced electron transfer (PET) while the other one increases solubility. The luminescence quantum yields for the new indicators exceed 75% in the protonated form. The new indicators are non-covalently entrapped in polyurethane hydrogel D4 and poly(hydroxyalkylmethacrylates). Several PET functions including aliphatic and aromatic amino groups were successfully used to tune the dynamic range of the sensor. Because of their virtually identical spectral properties, various PBIs with selected PET functions can easily be integrated into a single sensor with enlarged dynamic range (over 4 pH units). PBIs with two different substitution patterns in the bay position are investigated and possess variable spectral properties. Compared with their tetrachloro analogues, tetra-tert-butyl-substituted PBIs yield more long-wave excitable sensors which feature excellent photostability. Cross-sensitivity to ionic strength was found to be negligible. The practical applicability of the sensors may be compromised by the long response times (especially in case of tetra-tert-butyl-substituted PBIs)
A Triple Test for Behavioral Economics Models and Public Health Policy
We propose a triple test to evaluate the usefulness of behavioral economics models for public health policy. Test 1 is whether the model provides reasonably new insights. Test 2 is on whether these have been properly applied to policy settings. Test 3 is whether they are corroborated by evidence. Where a test is not passed, this may point to directions for needed further research. We exemplify by considering the cases of social interactions models, self-control models and, in relation to health message framing, prospect theory; out of these, only a correctly applied prospect theory fully passes the tests at present
- …