289 research outputs found

    Antiferromagnetic S=1/2 Heisenberg Chain and the Two-flavor Massless Schwinger Model

    Full text link
    An antiferromagnetic S=1/2 Heisenberg chain is mapped to the two-flavor massless Schwinger model at \theta=\pi. The electromagnetic coupling constant and velocity of light in the Schwinger model are determined in terms of the Heisenberg coupling and lattice spacing in the spin chain system.Comment: 3 pages. LaTex2

    Aspects of Confinement and Chiral Dynamics in 2-d QED at Finite Temperature

    Get PDF
    We evaluate the Polyakov loop and string tension at zero and finite temperature in QED2.QED_2. Using bozonization the problem is reduced to solving the Schr\"odinger equation with a particular potential determined by the ground state. In the presence of two sources of opposite charges the vacuum angle parameter θ\theta changes by 2π(q/e)2\pi (q/e), independent of the number of flavors. This, in turn, alters the chiral condensate. Particularly, in the one flavor case through a simple computer algorithm, we explore the chiral dynamics of a heavy fermion.Comment: 4 pages, 2 ps files, uses sprocl.sty. To appear in Proceedings of DPF96 (August, Minnesota

    Confinement and Chiral Dynamics in the Multi-flavor Schwinger Model

    Get PDF
    Two-dimensional QED with NN flavor fermions is solved at zero and finite temperature with arbitrary fermion masses to explore QCD physics such as chiral condensate and string tension. The problem is reduced to solving a Schr\"odinger equation for NN degrees of freedom with a specific potential determined by the ground state of the Schr\"odinger problem itself.Comment: 9 pages. 3 ps files and sprocl.sty attached. To appear in the Proceedings of the QCD 96 workshop (March, Minnesota

    Non-local symmetry breaking in Kaluza-Klein theories

    Get PDF
    Scherk-Schwarz gauge symmetry breaking of a D-dimensional field theory model compactified on a circle is analyzed. It is explicitly shown that forbidden couplings in the unbroken theory appear in the one-loop effective action only in a non-local way, implying that they are finite at all orders in perturbation theory. This result can be understood as a consequence of the local gauge symmetry, but it holds true also in the global limit.Comment: v2: Wilson loop contributions and generalization to SU(N) included; references added. v3: version to appear in Phys. Rev. Let

    Bulk Higgs and Gauge fields in a multiply warped braneworld model

    Full text link
    We readdress the problems associated with bulk Higgs and the gauge fields in a 5-dimensional Randall-Sundrum model by extending the model to six dimensions with double warping along the two extra spatial dimensions. In this 6-dimensional model we have a freedom of two moduli scales as against one modulus in the 5-dimensional model. With a little hierarchy between these moduli we can obtain the right magnitude for WW and ZZ boson masses from the Kaluza-Klein modes of massive bulk gauge fields where the spontaneous symmetry breaking is triggered by bulk Higgs . We also have determined the gauge couplings of the standard model fermions with Kaluza-Klein modes of the gauge fields. Unlike the case of 5-dimensional model with a massless bulk gauge field, here we have shown that the gauge couplings and the masses of the Kaluza-Klein gauge fields satisfy the precision electroweak constraints and also obey the Tevatron bounds.Comment: 15 Pages, Late

    A possible minimal gauge-Higgs unification

    Full text link
    A possible minimal model of the gauge-Higgs unification based on the higher dimensional spacetime M^4 X (S^1/Z_2) and the bulk gauge symmetry SU(3)_C X SU(3)_W X U(1)_X is constructed in some details. We argue that the Weinberg angle and the electromagnetic current can be correctly identified if one introduces the extra U(1)_X above and a bulk scalar triplet. The VEV of this scalar as well as the orbifold boundary conditions will break the bulk gauge symmetry down to that of the standard model. A new neutral zero-mode gauge boson Z' exists that gains mass via this VEV. We propose a simple fermion content that is free from all the anomalies when the extra brane-localized chiral fermions are taken into account as well. The issues on recovering a standard model chiral-fermion spectrum with the masses and flavor mixing are also discussed, where we need to introduce the two other brane scalars which also contribute to the Z' mass in the similar way as the scalar triplet. The neutrinos can get small masses via a type I seesaw mechanism. In this model, the mass of the Z' boson and the compactification scale are very constrained as respectively given in the ranges: 2.7 TeV < m_Z' < 13.6 TeV and 40 TeV < 1/R < 200 TeV.Comment: 20 pages, revised versio

    Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions

    Full text link
    We compute the Coleman Weinberg effective potential for the Higgs field in RS Gauge-Higgs unification scenarios based on a bulk SO(5) x U(1)_X gauge symmetry, with gauge and fermion fields propagating in the bulk and a custodial symmetry protecting the generation of large corrections to the T parameter and the coupling of the Z to the bottom quark. We demonstrate that electroweak symmetry breaking may be realized, with proper generation of the top and bottom quark masses for the same region of bulk mass parameters that lead to good agreement with precision electroweak data in the presence of a light Higgs. We compute the Higgs mass and demonstrate that for the range of parameters for which the Higgs boson has Standard Model-like properties, the Higgs mass is naturally in a range that varies between values close to the LEP experimental limit and about 160 GeV. This mass range may be probed at the Tevatron and at the LHC. We analyze the KK spectrum and briefly discuss the phenomenology of the light resonances arising in our model.Comment: 31 pages, 9 figures. Corrected typo in boundary condition for gauge bosons and top mass equation. To appear in PR

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure
    • …
    corecore