69 research outputs found

    The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    Get PDF
    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.United States. National Aeronautics and Space Administration (Innovative Advanced Concepts Grant NNX11AR25G)United States. National Aeronautics and Space Administration (Innovative Advanced Concepts Grant NNX12AQ58G

    Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration

    Get PDF
    The Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration is a visionary system concept that will revolutionize space missions by providing a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve human health and performance. The V2Suit uses control moment gyroscopes (CMGs) within a miniaturized module placed on body segments to provide a viscous resistance during movements _ a countermeasure to the sensorimotor and musculoskeletal adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Through an integrated design, system initialization, and control systems approach the V2Suit is capable of generating this viscous resistance along an arbitrarily specified direction of down. When movements are made, for example, parallel to that down direction a resistance is applied, and when the movement is perpendicular to that direction no resistance is applied. The V2Suit proposes to be a countermeasure to this spaceflight-related adaptation and de-conditioning and the unique sensorimotor characteristics associated with living and working in 0-G, which are critical for future long-duration space missions. This NIAC Phase II project leveraged the study results from Phase I and focused on detailing several aspects of the V2Suit concept, including a wearable CMG architecture, control steering laws, human-system integration evaluations, developing a brassboard prototype unit as a proof-of-concept, as well as evaluating the concept in the context of future space exploration missions. A human mission to Mars, such as that outlined in the Mars Design Reference Architecture 5.0, provides a framework for determining the concept of operations and requirements for the V2Suit system. Mars DRA 5.0 includes approximately 180 day 0-G transits to- and from- Mars, as well as a 500 day stay on the surface (~3/8-G) (Figure 3). Accordingly, there are four gravitational transitions associated with this mission: 1-G to 0-G (Earth launch), 0-G to 3/8-G (Mars landing), 3/8-G to 0-G (Mars launch), and 0-G to 1-G (Earth landing). This reference mission provided the basis for developing high-level operational requirements to guide the subsequent study and design of the key V2Suit components

    School Surveillance, Control, and Resistance in the United Kingdom

    Get PDF
    This chapter outlines the development of the current socio-political context within which U.K. schools experience surveillance and implement their security and disciplinary procedures. Schools are suggested to have developed their approaches to social control against a background of neoliberalism and audit culture. This involves the marketisation of much of the school system through an ‘academisation’ process; linked to this is an increased surveillance of teachers and students through datafication, CCTV and other digital means. Another form of surveillance- biopolitical control in schools- shows itself through the traditionalisation of gendered school uniform and the increasing pathologisation of the behaviour of ethnic minorities

    Tectonic evolution of the Arkaroola Basin: implications for the development of the Adelaide Rift Complex

    Get PDF
    This item is only available electronically.The Neoproterozoic to Cambro-Ordovician sediments of the Adelaide Rift Complex (formerly Adelaide Geosyncline) have been the focus of extensive investigation. Despite this, comparatively little is known about the Earliest Adelaidean Callanna Group sediments, due to their sparse preservation in outcrop geology. Exposure of the Callanna Group, and structures related to early Cryogenian graben formation at Arkaroola, in the northern Flinders Ranges, provides a unique opportunity to unravel the local geometries of rift initiation. These rocks have been subjected to multiple intracontinental deformations, most notably the Delamerian Orogeny. Through detailed structural mapping and analysis it is possible to propose models of tectonic evolution for this area. Previous regional scale mapping of the northern Flinders Ranges has identified a disparity between the tectonic history of the Arkaroola Basin and broader northern Flinders Ranges. The nature of the rifting and orogenic evolution of the Arkaroola Basin is determined though analysis of field data, rock samples in thin section and EBSD analysis. Graben formation accommodated an initial period of clastic and evaporitic deposition, followed by rift related basalt extrusion. This was followed by several phases of localised rifting and deposition, controlled by evolving fault geometries. Broad-scale orthogonal folding has folded an earlier composite fabric in conjunction with bedding. This initially planar fabric, most notable in the Woodnamoka Phyllite, formed during peak metamorphism of at least 500° C and approximately 3 kbars and is primarily attributed to burial beneath a thick pile of rift and sag phase sediments, coupled with a change in horizontal stresses. This is loosely constrained to post-rift cessation and before a previously indentified thermal pulse, ca 440 Ma. A set of NE-SW trending faults in the basin have been identified as En echelon stepovers of the Paralana Fault system, responsible for the formation of the pull-apart geometries. This system of faults details a strike-slip duplex, the reactivation of which, coupled with an anomalously high-heat producing basement, has controlled and localised deformation of the Arkaroola Basin.Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 201

    Complex structure of an upper-level shale detachment zone: Khao Khwang fold and thrust belt, Central Thailand

    No full text
    Abstract not availableRowan Lawrence Hansberry, Rosalind King, Alan S. Collins, Christopher K. Morle

    Structure of the Sibumasu-Indochina collision, central Thailand: a section through the Khao Khwang Fold and thrust belt

    No full text
    Abstract not availableFrancesco Arboit, Alan S. Collins, Rosalind King, Christopher K. Morley, Rowan Hansberr
    • …
    corecore