9,763 research outputs found
AN EXPERIMENTAL INVESTIGATION IN AN ATMOSPHERE ENTRY SIMULATOR OF NYLON AS AN ABLATIVE MATERIAL FOR BALLISTIC MISSILES
Investigation in atmosphere entry simulator of nylon as ablative material for ballistic missile
Simulation of charged particle trajectories in the neutron decay correlation experiment abBA
The proposed neutron decay correlation experiment, abBA, will directly detect the direction of emission of decay protons and electrons as well as providing spectroscopic information for both particles. In order to provide this information, the abBA experiment incorporates spatially varying electric and magnetic fields. We report on detailed simulations of the decay particle trajectories in order to assess the impact of various systematic effects on the experimental observables. These include among others; adiabaticity of particle orbits, tracking of orbits, reversal of low energy protons due to inhomogeneous electric field, and accuracy of proton time of flight measurements. Several simulation methods were used including commercial software (Simion), custom software, as well as analytical tools based on the use of adiabatic invariants. Our results indicate that the proposed field geometry of the abBA spectrometer will be substantially immune to most systematic effects and that transport calculations using adiabatic invariants agree well with solution of the full equations of motion
Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells
We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC
Increasing trap stiffness with position clamping in holographic optical tweezers
We present a holographic optical tweezers system capable of position clamping multiple particles. Moving an optical trap in response to the trapped object's motion is a powerful technique for optical control and force measurement. We have now realised this experimentally using a Boulder Nonlinear Systems Spatial Light Modulator (SLM) with a refresh rate of 203Hz. We obtain a reduction of 44% in the variance of the bead's position, corresponding to an increase in effective trap stiffness of 77%. This reduction relies on the generation of holograms at high speed. We present software capable of calculating holograms in under 1ms using a graphics processor unit. © 2009 Optical Society of America
Kinetic distance and kinetic maps from molecular dynamics simulation
Characterizing macromolecular kinetics from molecular dynamics (MD)
simulations requires a distance metric that can distinguish
slowly-interconverting states. Here we build upon diffusion map theory and
define a kinetic distance for irreducible Markov processes that quantifies how
slowly molecular conformations interconvert. The kinetic distance can be
computed given a model that approximates the eigenvalues and eigenvectors
(reaction coordinates) of the MD Markov operator. Here we employ the
time-lagged independent component analysis (TICA). The TICA components can be
scaled to provide a kinetic map in which the Euclidean distance corresponds to
the kinetic distance. As a result, the question of how many TICA dimensions
should be kept in a dimensionality reduction approach becomes obsolete, and one
parameter less needs to be specified in the kinetic model construction. We
demonstrate the approach using TICA and Markov state model (MSM) analyses for
illustrative models, protein conformation dynamics in bovine pancreatic trypsin
inhibitor and protein-inhibitor association in trypsin and benzamidine
Scaling behavior of quark propagator in full QCD
We study the scaling behavior of the quark propagator on two lattices with
similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in
order to test whether we are close to the continuum limit for these lattices.
We use configurations generated with an improved staggered (``Asqtad'') action
by the MILC collaboration. The calculations are performed on
lattices with lattice spacing fm and on lattices
with lattice spacing fm. We calculate the quark mass function,
, and the wave-function renormalization function, , for a
variety of bare quark masses. Comparing the behavior of these functions on the
two sets of lattices we find that both and show little
sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure
Quantitative estimates of relationships between geomagnetic activity and equatorial spread-F as determined by TID occurrence levels
Using a world-wide set of stations for 15 years, quantitative estimates of changes to equatorial spread-F (ESF) occurrence rates obtained from ionogram scalings, have been determined for a range of geomagnetic activity (GA) levels, as well as for four different levels of solar activity. Average occurrence rates were used as a reference. The percentage changes vary significantly depending on these subdivisions. For example for very high GA the inverse association is recorded by a change of -33% for R-z greater than or equal to 150, and -10% for R-z < 50. Using data for 9 years for the equatorial station, Huancayo, these measurements of ESF which indicate the presence of TIDs, have also been investigated by somewhat similar analyses. Additional parameters were used which involved the local times of GA, with the ESF being examined separately for occurrence pre-midnight (PM) and after-midnight (AM). Again the negative changes were most pronounced for high GA in R-z-max years (-21%). This result is for PM ESF for GA at a local time of 1700. There were increased ESF levels (+31%) for AM ESF in R-z-min years for high GA around 2300 LT. This additional knowledge of the influence of GA on ESF occurrence involving not only percentage changes, but these values for a range of parameter levels, may be useful if ever short-term forecasts are needed. There is some discussion on comparisons which can be made between ESF results obtained by coherent scatter from incoherent-scatter equipment and those obtained by ionosondes
Scaling Behavior of the Landau Gauge Overlap Quark Propagator
The properties of the momentum space quark propagator in Landau gauge are
examined for the overlap quark action in quenched lattice QCD. Numerical
calculations are done on three lattices with different lattice spacings and
similar physical volumes to explore the approach of the quark propagator
towards the continuum limit. We have calculated the nonperturbative
momentum-dependent wavefunction renormalization function and the
nonperturbative mass function for a variety of bare quark masses and
extrapolate to the chiral limit.
We find the behavior of and are in good agreement for the
two finer lattices in the chiral limit. The quark condensate is also
calculated.Comment: 3 pages, Lattice2003(Chiral fermions
Casimir-Polder force density between an atom and a conducting wall
In this paper we calculate the Casimir-Polder force density (force per unit
area acting on the elements of the surface) on a metallic plate placed in front
of a neutral atom. To obtain the force density we use the quantum operator
associated to the electromagnetic stress tensor. We explicitly show that the
integral of this force density over the plate reproduces the total force acting
on the plate. This result shows that, although the force is obtained as a sum
of surface element-atom contributions, the stress-tensor method includes also
nonadditive components of Casimir-Polder forces in the evaluation of the force
acting on a macroscopic object.Comment: 5 page
- …