16 research outputs found

    Relativistic calculations of isotope shifts in highly charged ions

    Full text link
    The isotope shifts of forbidden transitions in Be- and B-like argon ions are calculated. It is shown that only using the relativistic recoil operator can provide a proper evaluation of the mass isotope shift, which strongly dominates over the field isotope shift for the ions under consideration. Comparing the isotope shifts calculated with the current experimental uncertainties indicates very good perspectives for a first test of the relativistic theory of the recoil effect in middle-Z ions

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde

    A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal

    Get PDF
    BACKGROUND: The increasing availability of reference libraries of DNA barcodes (RLDB) offers the opportunity to the screen the level of consistency in DNA barcode data among libraries, in order to detect possible disagreements generated from taxonomic uncertainty or operational shortcomings. We propose a ranking system to attribute a confidence level to species identifications associated with DNA barcode records from a RLDB. Here we apply the proposed ranking system to a newly generated RLDB for marine fish of Portugal. METHODOLOGY/PRINCIPAL FINDINGS: Specimens (n = 659) representing 102 marine fish species were collected along the continental shelf of Portugal, morphologically identified and archived in a museum collection. Samples were sequenced at the barcode region of the cytochrome oxidase subunit I gene (COI-5P). Resultant DNA barcodes had average intra-specific and inter-specific Kimura-2-parameter distances (0.32% and 8.84%, respectively) within the range usually observed for marine fishes. All specimens were ranked in five different levels (A-E), according to the reliability of the match between their species identification and the respective diagnostic DNA barcodes. Grades A to E were attributed upon submission of individual specimen sequences to BOLD-IDS and inspection of the clustering pattern in the NJ tree generated. Overall, our study resulted in 73.5% of unambiguous species IDs (grade A), 7.8% taxonomically congruent barcode clusters within our dataset, but awaiting external confirmation (grade B), and 18.7% of species identifications with lower levels of reliability (grades C/E). CONCLUSION/SIGNIFICANCE: We highlight the importance of implementing a system to rank barcode records in RLDB, in order to flag taxa in need of taxonomic revision, or reduce ambiguities of discordant data. With increasing DNA barcode records publicly available, this cross-validation system would provide a metric of relative accuracy of barcodes, while enabling the continuous revision and annotation required in taxonomic work

    Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157

    Get PDF
    Context. Several new ultrahigh-energy (UHE) γ-ray sources have recently been discovered by the Large High Altitude Air Shower Observatory (LHAASO) collaboration. These represent a step forward in the search for the so-called Galactic PeVatrons, the enigmatic sources of the Galactic cosmic rays up to PeV energies. However, it has been shown that multi-TeV γ-ray emission does not necessarily prove the existence of a hadronic accelerator in the source; indeed this emission could also be explained as inverse Compton scattering from electrons in a radiation-dominated environment. A clear distinction between the two major emission mechanisms would only be made possible by taking into account multi-wavelength data and detailed morphology of the source. Aims. We aim to understand the nature of the unidentified source LHAASO J2108+5157, which is one of the few known UHE sources with no very high-energy (VHE) counterpart. Methods. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good-quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its high-energy (HE) counterpart 4FGL J2108.0+5155. We used naima and jetset software packages to examine the leptonic and hadronic scenario of the multi-wavelength emission of the source. Results. We found an excess (3.7σ) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2σ) of hard emission, which can be described with a single power law with a photon index of Σ = 1.6 ± 0.2 the range of 0.3 - 100 TeV. We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4σ and a photon index of Σ = 1.9 ± 0.2, which is not spatially correlated with LHAASO J2108+5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0+5155. Conclusions. The LST-1 and LHAASO observations can be explained as inverse Compton-dominated leptonic emission of relativistic electrons with a cutoff energy of 100-30+70 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a PWN or a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a Geminga-like pulsar, which would be able to power the VHE-UHE emission. Nevertheless, the lack of a pulsar in the neighborhood of the UHE source is a challenge to the PWN/TeV-halo scenario. The UHE γ rays can also be explained as π0 decay-dominated hadronic emission due to interaction of relativistic protons with one of the two known molecular clouds in the direction of the source. Indeed, the hard spectrum in the LST-1 band is compatible with protons escaping a shock around a middle-aged SNR because of their high low-energy cut-off, but the origin of the HE γ-ray emission remains an open question

    Observations of the Crab Nebula and Pulsar with the Large-sized Telescope Prototype of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a next-generation ground-based observatory for gamma-ray astronomy at very high energies. The Large-Sized Telescope prototype (LST-1) is located at the CTA-North site, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to ≃20 GeV. LST-1 started performing astronomical observations in 2019 November, during its commissioning phase, and it has been taking data ever since. We present the first LST-1 observations of the Crab Nebula, the standard candle of very-high-energy gamma-ray astronomy, and use them, together with simulations, to assess the performance of the telescope. LST-1 has reached the expected performance during its commissioning period—only a minor adjustment of the preexisting simulations was needed to match the telescope’s behavior. The energy threshold at trigger level is around 20 GeV, rising to ≃30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.°12-0.°40, and energy resolution from 15%-50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50 hr observation (12% for 30 minutes). The spectral energy distribution (in the 0.03-30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula

    Star tracking for pointing determination of Imaging Atmospheric Cherenkov Telescopes: Application to the Large-Sized Telescope of the Cherenkov Telescope Array

    Get PDF
    We present a novel approach to the determination of the pointing of Imaging Atmospheric Cherenkov Telescopes (IACTs) using the trajectories of the stars in their camera s field of view. The method starts with the reconstruction of the star positions from the Cherenkov camera data, taking into account the point spread function of the telescope, to achieve a satisfying reconstruction accuracy of the pointing position. A simultaneous fit of all reconstructed star trajectories is then performed with the orthogonal distance regression (ODR) method. ODR allows us to correctly include the star position uncertainties and use the time as an independent variable. Having the time as an independent variable in the fit makes it better suitable for various star trajectories. This method can be applied to any IACT and requires neither specific hardware nor interface or special data-taking mode. In this paper, we use the Large-Sized Telescope (LST) data to validate it as a useful tool to improve the determination of the pointing direction during regular data taking. The simulation studies show that the accuracy and precision of the method are comparable with the design requirements on the pointing accuracy of the LST (=14''). With the typical LST event acquisition rate of 10 kHz, the method can achieve up to 50 Hz pointing monitoring rate, compared to O(1) Hz achievable with standard techniques. The application of the method to the LST prototype (LST-1) commissioning data shows the stable pointing performance of the telescope

    Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data

    Get PDF
    Aims. Large-Sized Telescope 1 (LST-1), the prototype for the Large-Sized Telescope at the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning phase at the Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes makes it possible to carry out observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and used simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows for the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we found a significant improvement in sensitivity, allowing for the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range between ∼60 GeV and ∼10 TeV, is in agreement with previous measurements
    corecore