6,816 research outputs found
Versatile Data Acquisition and Controls for Epics Using Vme-Based Fpgas
Field-Programmable Gate Arrays (FPGAs) have provided Thomas Jefferson
National Accelerator Facility (Jefferson Lab) with versatile VME-based data
acquisition and control interfaces with minimal development times. FPGA designs
have been used to interface to VME and provide control logic for numerous
systems. The building blocks of these logic designs can be tailored to the
individual needs of each system and provide system operators with read-backs
and controls via a VME interface to an EPICS based computer. This versatility
allows the system developer to choose components and define operating
parameters and options that are not readily available commercially. Jefferson
Lab has begun developing standard FPGA libraries that result in quick turn
around times and inexpensive designs.Comment: 3 pages, ICALEPCS 2001, T. Allison and R. Foold, Jefferson La
Bracknell Meteorological Office
The Bracknell (U.K.) Meteorological Office runs a global weather model twice a day, providing the following data: surface and radiosonde; aircraft reports; and satellite soundings and wind. A human forecast is made every six hours. The model runs on a 150 km grid with 15 levels, and takes about four minutes on a Cyber-205. The standard output from the global products are wind, temperature, height, tropopause, and maximum wind. Various experiments have been conducted to see if short-range forecasters could improve on the upper-wind forecasts over the numerical model; the numerical model remains of paramount importance. Small-scale models are being run in the U.S. and the U.K. A fine-mesh model covers Europe and the Atlantic. A mesoscale model is under development. A great deal of verification work is done to see how good the models are
Estimation of minority carrier diffusion lengths in InP/GaAs solar cells
Minority carrier diffusion length is one of the most important parameters affecting the solar cell performance. An attempt is made to estimate the minority carrier diffusion lengths is the emitter and base of InP/GaAs heteroepitaxial solar cells. The PC-1D computer model was used to simulate the experimental cell results measured at NASA Lewis under AMO (air mass zero) spectrum at 25 C. A 16 nm hole diffusion length in the emitter and a 0.42 micron electron diffusion length in the base gave very good agreement with the I-V curve. The effect of varying minority carrier diffusion lengths on cell short current, open circuit voltage, and efficiency was studied. It is also observed that the front surface recombination velocity has very little influence on the cell performance. The poor output of heteroepitaxial cells is caused primarily by the large number of dislocations generated at the interfaces that propagate through the bulk indium phosphide layers. Cell efficiency as a function of dislocation density was calculated and the effect of improved emitter bulk properties on cell efficiency is presented. It is found that cells with over 16 percent efficiencies should be possible, provided the dislocation density is below 10(exp 6)/sq cm
A Dual Digital Signal Processor VME Board For Instrumentation And Control Applications
A Dual Digital Signal Processing VME Board was developed for the Continuous
Electron Beam Accelerator Facility (CEBAF) Beam Current Monitor (BCM) system at
Jefferson Lab. It is a versatile general-purpose digital signal processing
board using an open architecture, which allows for adaptation to various
applications. The base design uses two independent Texas Instrument (TI)
TMS320C6711, which are 900 MFLOPS floating-point digital signal processors
(DSP). Applications that require a fixed point DSP can be implemented by
replacing the baseline DSP with the pin-for-pin compatible TMS320C6211. The
design can be manufactured with a reduced chip set without redesigning the
printed circuit board. For example it can be implemented as a single-channel
DSP with no analog I/O.Comment: 3 PDF page
Comparative modeling of InP solar cell structures
The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed
GaAs homojunction solar cell development
The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells
Applicability of ERTS-1 to Montana geology
The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints
Dual-purpose self-deliverable lunar surface PV electrical power system
A safe haven and work supported PV power systems on the lunar surface will likely be required by NASA in support of the manned outpost scheduled for the post-2000 lunar/Mars exploration and colonization initiative. Initial system modeling and computer analysis shows that the concept is workable and contains no major high risk technology issues which cannot be resolved in the circa 2000 to 2025 timeframe. A specific selection of the best suited type of electric thruster has not been done; the initial modeling was done using an ion thruster, but Rocketdyne must also evaluate arc and resisto-jets before a final design can be formulated. As a general observation, it appears that such a system can deliver itself to the Moon using many system elements that must be transported as dead payload mass in more conventional delivery modes. It further appears that a larger power system providing a much higher safe haven power level is feasible if this delivery system is implemented, perhaps even sufficient to permit resource prospecting and/or lab experimentation. The concept permits growth and can be expanded to include cargo transport such as habitat and working modules. In short, the combined payload could be manned soon after landing and checkout. NASA has expended substantial resources in the development of electric propulsion concepts and hardware that can be applied to a lunar transport system such as described herein. In short, the paper may represent a viable mission on which previous investments play an invaluable role. A more comprehensive technical paper which embodies second generation analysis and system size will be prepared for near-term presentation
- …