1,855 research outputs found
Historical origins of nasa's launch operations center to july 1, 1962
Historical origins of NASA Launch Operations Center to July 1, 196
Variability Flagging in the Wide-field Infrared Survey Explorer Preliminary Data Release
The Wide-field Infrared Survey Explorer Preliminary Data Release Source Catalog contains over 257 million objects. We describe the method used to flag variable source candidates in the Catalog. Using a method based on the chi-square of single-exposure flux measurements, we generated a variability flag for each object, and have identified almost 460,000 candidate sources that exhibit significant flux variability with greater than ~7σ confidence. We discuss the flagging method in detail and describe its benefits and limitations. We also present results from the flagging method, including example light curves of several types of variable sources including Algol-type eclipsing binaries, RR Lyr, W UMa, and a blazar candidate
Radio galaxies and their magnetic fields out to z <= 3
We present polarisation properties at GHz of two separate
extragalactic source populations: passive quiescent galaxies and luminous
quasar-like galaxies. We use data from the {\it Wide-Field Infrared Survey
Explorer} data to determine the host galaxy population of the polarised
extragalactic radio sources. The quiescent galaxies have higher percentage
polarisation, smaller radio linear size, and GHz luminosity of
W Hz, while the quasar-like
galaxies have smaller percentage polarisation, larger radio linear size at
radio wavelengths, and a GHz luminosity of W Hz, suggesting that the environment of the
quasar-like galaxies is responsible for the lower percentage polarisation. Our
results confirm previous studies that found an inverse correlation between
percentage polarisation and total flux density at GHz. We suggest that
the population change between the polarised extragalactic radio sources is the
origin of this inverse correlation and suggest a cosmic evolution of the space
density of quiescent galaxies. Finally, we find that the extragalactic
contributions to the rotation measures (RMs) of the nearby passive galaxies and
the distant quasar-like galaxies are different. After accounting for the RM
contributions by cosmological large-scale structure and intervening Mg\,{II}
absorbers we show that the distribution of intrinsic RMs of the distant
quasar-like sources is at most four times as wide as the RM distribution of the
nearby quiescent galaxies, if the distribution of intrinsic RMs of the
WISE-Star sources itself is at least several rad m wide.Comment: 12 pages, 8 figures, accepted for publication into MNRA
Discovery of Highly Obscured Galaxies in the Zone of Avoidance
We report the discovery of twenty-five previously unknown galaxies in the
Zone of Avoidance. Our systematic search for extended extra-galactic sources in
the GLIMPSE and MIPSGAL mid-infrared surveys of the Galactic plane has revealed
two overdensities of these sources, located around l ~ 47 and 55 degrees and
|b| less than 1 degree in the Sagitta-Aquila region. These overdensities are
consistent with the local large-scale structure found at similar Galactic
longitude and extending from |b| ~ 4 to 40 degrees. We show that the infrared
spectral energy distribution of these sources is indeed consistent with those
of normal galaxies. Photometric estimates of their redshift indicate that the
majority of these galaxies are found in the redshift range z = 0.01 - 0.05,
with one source located at z = 0.07. Comparison with known sources in the local
Universe reveals that these galaxies are located at similar overdensities in
redshift space. These new galaxies are the first evidence of a bridge linking
the large-scale structure between both sides of the Galactic plane at very low
Galactic latitude and clearly demonstrate the feasibility of detecting galaxies
in the Zone of Avoidance using mid-to-far infrared surveys.Comment: Accepted for publication in the Astronomical Journal, 28 pages, 5
tables, 11 figure
Theoretical simulation of the anisotropic phases of antiferromagnetic thin films
We simulate antiferromagnetic thin films. Dipole-dipole and antiferromagnetic
exchange interactions as well as uniaxial and quadrupolar anisotropies are
taken into account. Various phases unfold as the corresponding parameters, J, D
and C, as well as the temperature T and the number n of film layers vary. We
find (1) how the strength Delta_m of the anisotropy arising from dipole-dipole
interactions varies with the number of layers m away from the film's surface,
with J and with n; (2) a unified phase diagram for all n-layer films and bulk
systems; (3) a layer dependent spin reorientation (SR) phase in which spins
rotate continuously as T, D, C and n vary; (4) that the ratio of the SR to the
ordering temperature depends (approximately) on n only through (D+Delta/n)/C,
and hardly on J; (5) a phase transformation between two different magnetic
orderings, in which spin orientations may or may not change, for some values of
J, by varying n.Comment: 10 LaTeX pages, 13 eps figures. Submitted to PRB on 30 June 2006.
Accepted on 10 October 200
Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science
The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations
Optically controlled spin-glasses in multi-qubit cavity systems
Recent advances in nanostructure fabrication and optical control, suggest
that it will soon be possible to prepare collections of interacting two-level
systems (i.e. qubits) within an optical cavity. Here we show theoretically that
such systems could exhibit novel phase transition phenomena involving
spin-glass phases. By contrast with traditional realizations using magnetic
solids, these phase transition phenomena are associated with both matter and
radiation subsystems. Moreover the various phase transitions should be tunable
simply by varying the matter-radiation coupling strength.Comment: 4 pages, 3 figure
Infrared luminosities of galaxies in the Local Volume
Near-infrared properties of 451 galaxies with distances D \leq 10 Mpc are
considered basing on the all-sky two micron survey (2MASS). A luminosity
function of the galaxies in the K-band is derived within [-25,-11] mag. The
local (D < 8 Mpc) luminosity density is estimated to be 6.8*10^8 L_sun/Mpc^3
that exceeds (1.5+-0.1) times the global cosmic density in the K-band. Virial
mass-to-K-luminosity ratios are determined for nearby groups and clusters. In
the luminosity range of (5*10^{10} - 2*10^{13})L_sun, the groups and clusters
follow the relation \lg(M/L_K) propto (0.27+-0.03) lg(L_K) with a scatter of
\~0.1 comparable to errors of the observables. The mean ratio ~=
(20-25) M_sun/L_sun for the galaxy systems turns out to be significantly lower
than the global ratio, (80-90)M_sun/L_sun, expected in the standard
cosmological model with the matter density of Omega_m =0.27. This discrepancy
can be resolved if most of dark matter in the universe is not associated with
galaxies and their systems.Comment: 15 pages, 7 figures. Astronomy Letters, submitte
Global anisotropy of arrival directions of ultra-high-energy cosmic rays: capabilities of space-based detectors
Planned space-based ultra-high-energy cosmic-ray detectors (TUS, JEM-EUSO and
S-EUSO) are best suited for searches of global anisotropies in the distribution
of arrival directions of cosmic-ray particles because they will be able to
observe the full sky with a single instrument. We calculate quantitatively the
strength of anisotropies associated with two models of the origin of the
highest-energy particles: the extragalactic model (sources follow the
distribution of galaxies in the Universe) and the superheavy dark-matter model
(sources follow the distribution of dark matter in the Galactic halo). Based on
the expected exposure of the experiments, we estimate the optimal strategy for
efficient search of these effects.Comment: 19 pages, 7 figures, iopart style. v.2: discussion of the effect of
the cosmic magnetic fields added; other minor changes. Simulated UHECR
skymaps available at http://livni.inr.ac.ru/UHECRskymaps
- …