707 research outputs found
A novel thiazolidine compound induces caspase-9 dependent apoptosis in cancer cells
Cataloged from PDF version of article.The forward chemogenomics strategy allowed us to identify a potent cytotoxic thiazolidine compound as an apoptosis-inducing agent. Chemical structures were designed around a thiazolidine ring, a structure already noted for its anticancer properties. Initially, we evaluated these novel compounds on liver, breast, colon and endometrial cancer cell lines. The compound 3 (ALC67) showed the strongest cytotoxic activity (IC50 ∼5 μM). Cell cycle analysis with ALC67 on liver cells revealed SubG1/G1 arrest bearing apoptosis. Furthermore we demonstrated that cytotoxicity of this compound was due to the activation of caspase-9 involved apoptotic pathway, which is death receptor independent. © 2012 Elsevier Ltd. All rights reserve
Anthropology is the discipline but the goal is ethnography
In this debate piece, I argue that there is something more important than the discipline of anthropology, and that is the ability of anthropologists to study the world through ethnography and transmit that understanding back to global populations as education. An inwardly directed concern only with our discipline can sometimes constrain both of these tasks
Review of the Palaearctic species of Ismaridae Thomson, 1858 (Hymenoptera: Diaprioidea)
This is an open access article, available to all readers online, published under a Creative Commons BY-NC-ND license: https://creativecommons.org/licenses/by-nc-nd/3.0/. The attached file is the published version of the article
Estimation and analysis of multi-GNSS differential code biases using a hardware signal simulator
In ionospheric modeling, the differential code biases (DCBs) are a non-negligible error source, which are routinely estimated by the different analysis centers of the International GNSS Service (IGS) as a by-product of their global ionospheric analysis. These are, however, estimated only for the IGS station receivers and for all the satellites of the different GNSS constellations. A technique is proposed for estimating the receiver and satellites DCBs in a global or regional network by first estimating the DCB of one receiver set as reference. This receiver DCB is then used as a ‘known’ parameter to constrain the global ionospheric solution, where the receiver and satellite DCBs are estimated for the entire network. This is in contrast to the constraint used by the IGS, which assumes that the involved satellites DCBs have a zero mean. The ‘known’ receiver DCB is obtained by simulating signals that are free of the ionospheric, tropospheric and other group delays using a hardware signal simulator. When applying the proposed technique for Global Positioning System legacy signals, mean offsets in the order of 3 ns for satellites and receivers were found to exist between the estimated DCBs and the IGS published DCBs. It was shown that these estimated DCBs are fairly stable in time, especially for the legacy signals. When the proposed technique is applied for the DCBs estimation using the newer Galileo signals, an agreement at the level of 1–2 ns was found between the estimated DCBs and the manufacturer’s measured DCBs, as published by the European Space Agency, for the three still operational Galileo in-orbit validation satellites
Recommended from our members
Combined transcriptomic-(1)H NMR metabonomic study reveals yhat monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP
Efficient Experimental and Data-Centered Workflow for Microstructure-Based Fatigue Data – Towards a Data Basis for Predictive AI Models
Background
Early fatigue mechanisms for various materials are yet to be unveiled for the (very) high-cycle fatigue (VHCF) regime. This can be ascribed to a lack of available data capturing initial fatigue damage evolution, which continues to adversely affect data scientists and computational modeling experts attempting to derive microstructural dependencies from small sample size data and incomplete feature representations.
Objective
The aim of this work is to address this lack and to drive the digital transformation of materials such that future virtual component design can be rendered more reliable and more efficient. Achieving this relies on fatigue models that comprehensively capture all relevant dependencies.
Methods
To this end, this work proposes a combined experimental and data post-processing workflow to establish multimodal fatigue crack initiation and propagation data sets efficiently. It evolves around fatigue testing of mesoscale specimens to increase damage detection sensitivity, data fusion through multimodal registration to address data heterogeneity, and image-based data-driven damage localization.
Results
A workflow with a high degree of automation is established, that links large distortion-corrected microstructure data with damage localization and evolution kinetics. The workflow enables cycling up to the VHCF regime in comparatively short time spans, while maintaining unprecedented time resolution of damage evolution. Resulting data sets capture the interaction of damage with microstructural features and hold the potential to unravel a mechanistic understanding.
Conclusions
The proposed workflow lays the foundation for future data mining and data-driven modeling of microstructural fatigue by providing statistically meaningful data sets extendable to a wide range of materials
<研究ノート>西成特区構想の展開と課題 : あいりん地域の新たなセーフティネットづくりを中心に
In this report, Mo(VI) ions are transported from an aqueous donor phase into an aqueous acceptor phase by a newly designed method called as multi dropped liquid membrane (MDLM) system prepared by dissolving TNOA as carrier in kerosene. During the extraction of Mo(VI) ions by the liquid membrane system; 100ppm Mo(VI) solutions as donor phase, buffer solution(pH:9.5) and Na2CO3 in different concentrations as acceptor phase and TNOA diluted by kerosen as organic phase are used.In our experimental work, the effect of temperature by using buffer solution and Na2CO3 in the acceptor phase and effect of concentration of acceptor phase on the extraction of Mo(VI) ions were investigated. Appropriate conditions for Mo(VI) transportation were as follows: pH of donor phase is 2.00, concentration of TNOA is 0.005M, 1.00M Na2CO3 as acceptor phase, and flux rate is 50mL/min. Besides, Mo(VI) ion transportation is consecutive first order irreversible reaction and the transportation of Mo(VI) ions is diffusion controlled process. The kinetic parameters (k1, k2, Rm(max), tmax, Jd(max), Ja(max)) were calculated for the interface reactions assuming two consecutive, irreversible first-order reactions
- …
