182 research outputs found

    Fine-specificity of cytotoxic T lymphocytes which recognize conserved epitopes of the Gag protein of human immunodeficiency virus type 1

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) Gag-specific cytotoxic T lymphocyte (CTL) responses were studied in seven seropositive long-term asymptomatic individuals (CDC A1)with stable CD4 counts for more than 8 years. Using a set of partially overlapping peptides covering the whole Gag, five 15-20-mer peptides were found to contain CTL epitopes. Further characterization of these epitopes revealed a new HLA-A25-restricted CTL epitope in p24, p24203-212 ETINEEAAEW. This region of Gag highly conserved in clades B and D of HIV-1. Naturally occurring amino acid sequences, containing p24203D (consensus HIV-1 clades A, C, F, G and H) or p24204I(HIV-2(ROD)) were not recognized by CTL recognizing the index peptide. No virus variants with mutations in this sequence were found in peripheral blood mononuclear cells from the HIV-1-infected individual concerned during the 8 year observation period, indicating that the virus had not escaped from the observed CTL response.</p

    Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Get PDF
    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR

    Numerical and experimental investigation of a lightweight bonnet for pedestrian safety

    Get PDF
    A topic of great consideration in current vehicle development in Europe is pedestrian protection. The enforcement of a new regulation trying to decrease the injuries to head, pelvis, and leg of pedestrian impacted by cars, is imposing great changes in vehicles' front design. In the present work a design solution for the bonnet, which is the main body part interacting with the human head during a car to pedestrian collision, is proposed. This solution meets the stiffness and safety targets, takes into account the manufacturing and recyclability requirements and gives a relevant contribution to vehicle lightweight. Thus this proposed solution puts in evidence that safety and lightweight are not incompatible targets. The amount of potential injury to the pedestrian head is evaluated, as prescribed by the standard test procedures, by means of a headform launched on the bonnet. However, the standard approach based on the head injury criterion (HIC) value only is reported to be largely unsatisfactory: therefore, a new experimental methodology for the measurement of the translational and the rotational accelerations has been developed, and the experimental results are reported. This would be a starting point for the evolution of currently adopted injury criteria to increase the safety of the vulnerable road user

    Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice.</p> <p>Methods</p> <p>C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis.</p> <p>Results</p> <p>Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors.</p> <p>Conclusion</p> <p>Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer.</p

    Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials

    Get PDF
    Background: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. Methods: In this genome-wide analysis we included adults (aged ≥18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. Findings: 4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G→A (Gly168Ser) in the GLP1R (0·08% [95% CI 0·04–0·12] or 0·9 mmol/mol lower reduction in HbA1c per serine, p=6·0 × 10−5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6·7 × 10−8), largely driven by rs140226575G→A (Thr370Met; 0·25% [SE 0·06] or 2·7 mmol/mol [SE 0·7] greater HbA1c reduction per methionine, p=5·2 × 10−6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6–11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. Interpretation: This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists. Funding: Innovative Medicines Initiative and the Wellcome Trus

    Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration

    Get PDF
    Background & Aims: Excess liver iron content is common and is linked to hepatic and extrahepatic disease risk. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals in UK Biobank with MRI quantified liver iron, and validated our findings in an independent cohort (n=1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 29 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 anthropometric traits and diseases. Results: We identified three independent genetic variants (rs1800562 (C282Y) and rs1799945 (H63D) in HFE and rs855791 (V736A) in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p<5x10-8). The two HFE variants account for ~85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases
    • …
    corecore