1,292 research outputs found

    Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge

    Full text link
    Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are characterized by resonant tunneling spectroscopy in the presence of high magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman splitting of the acceptor levels. In an in-plane field, on the other hand, the Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is shown to be a consequence of the huge light hole-heavy hole splitting caused by a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page

    Near-infrared spectropolarimetry of a delta-spot

    Full text link
    Sunspots harboring umbrae of both magnetic polarities within a common penumbra (delta-spots) are often but not always related to flares. We present first near-infrared (NIR) observations (Fe I 1078.3 nm and Si I 1078.6 nm spectra) obtained with the Tenerife Infrared Polarimeter (TIP) at the Vacuum Tower Telescope (VTT) in Tenerife on 2012 June 17, which afford accurate and sensitive diagnostics to scrutinize the complex fields along the magnetic neutral line of a delta-spot within active region NOAA 11504. We examine the vector magnetic field, line-of-sight (LOS) velocities, and horizontal proper motions of this rather inactive delta-spot. We find a smooth transition of the magnetic vector field from the main umbra to that of opposite polarity (delta-umbra), but a discontinuity of the horizontal magnetic field at some distance from the delta-umbra on the polarity inversion line. The magnetic field decreases faster with height by a factor of two above the delta-umbra. The latter is surrounded by its own Evershed flow. The Evershed flow coming from the main umbra ends at a line dividing the spot into two parts. This line is marked by the occurrence of central emission in the Ca II 854.2 nm line. Along this line, high chromospheric LOS-velocities of both signs appear. We detect a shear flow within the horizontal flux transport velocities parallel to the dividing line.Comment: 4 pages, will appear as Letter in Astronomy & Astrophysic

    The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    Full text link
    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).Comment: 12 pages, 11 figures, submitted to SPIE Optics+Photonics, San Diego, U.S.A., 26-30 August 2007, Conference: Solar Physics and Space Weather Instrumentation II, Proceedings of SPIE Volume 6689, Paper #2

    Finite type approximations of Gibbs measures on sofic subshifts

    Full text link
    Consider a H\"older continuous potential ϕ\phi defined on the full shift A^\nn, where AA is a finite alphabet. Let X\subset A^\nn be a specified sofic subshift. It is well-known that there is a unique Gibbs measure μϕ\mu_\phi on XX associated to ϕ\phi. Besides, there is a natural nested sequence of subshifts of finite type (Xm)(X_m) converging to the sofic subshift XX. To this sequence we can associate a sequence of Gibbs measures (μϕm)(\mu_{\phi}^m). In this paper, we prove that these measures weakly converge at exponential speed to μϕ\mu_\phi (in the classical distance metrizing weak topology). We also establish a strong mixing property (ensuring weak Bernoullicity) of μϕ\mu_\phi. Finally, we prove that the measure-theoretic entropy of μϕm\mu_\phi^m converges to the one of μϕ\mu_\phi exponentially fast. We indicate how to extend our results to more general subshifts and potentials. We stress that we use basic algebraic tools (contractive properties of iterated matrices) and symbolic dynamics.Comment: 18 pages, no figure

    Separation of trajectories and its Relation to Entropy for Intermittent Systems with a Zero Lyapunov exponent

    Full text link
    One dimensional intermittent maps with stretched exponential separation of nearby trajectories are considered. When time goes infinity the standard Lyapunov exponent is zero. We investigate the distribution of λα=i=0t1lnM(xi)/tα\lambda_{\alpha}= \sum_{i=0}^{t-1} \ln \left| M'(x_i) \right|/t^{\alpha}, where α\alpha is determined by the nonlinearity of the map in the vicinity of marginally unstable fixed points. The mean of λα\lambda_{\alpha} is determined by the infinite invariant density. Using semi analytical arguments we calculate the infinite invariant density for the Pomeau-Manneville map, and with it obtain excellent agreement between numerical simulation and theory. We show that \alpha \left is equal to Krengel's entropy and to the complexity calculated by the Lempel-Ziv compression algorithm. This generalized Pesin's identity shows that \left and Krengel's entropy are the natural generalizations of usual Lyapunov exponent and entropy for these systems.Comment: 12 pages, 10 figure

    Limit theorems for von Mises statistics of a measure preserving transformation

    Full text link
    For a measure preserving transformation TT of a probability space (X,F,μ)(X,\mathcal F,\mu) we investigate almost sure and distributional convergence of random variables of the form x1Cni1<n,...,id<nf(Ti1x,...,Tidx),n=1,2,...,x \to \frac{1}{C_n} \sum_{i_1<n,...,i_d<n} f(T^{i_1}x,...,T^{i_d}x),\, n=1,2,..., where ff (called the \emph{kernel}) is a function from XdX^d to R\R and C1,C2,...C_1, C_2,... are appropriate normalizing constants. We observe that the above random variables are well defined and belong to Lr(μ)L_r(\mu) provided that the kernel is chosen from the projective tensor product Lp(X1,F1,μ1)π...πLp(Xd,Fd,μd)Lp(μd)L_p(X_1,\mathcal F_1, \mu_1) \otimes_{\pi}...\otimes_{\pi} L_p(X_d,\mathcal F_d, \mu_d)\subset L_p(\mu^d) with p=dr,r [1,).p=d\,r,\, r\ \in [1, \infty). We establish a form of the individual ergodic theorem for such sequences. Next, we give a martingale approximation argument to derive a central limit theorem in the non-degenerate case (in the sense of the classical Hoeffding's decomposition). Furthermore, for d=2d=2 and a wide class of canonical kernels ff we also show that the convergence holds in distribution towards a quadratic form m=1λmηm2\sum_{m=1}^{\infty} \lambda_m\eta^2_m in independent standard Gaussian variables η1,η2,...\eta_1, \eta_2,.... Our results on the distributional convergence use a TT--\,invariant filtration as a prerequisite and are derived from uni- and multivariate martingale approximations

    On conformal measures and harmonic functions for group extensions

    Full text link
    We prove a Perron-Frobenius-Ruelle theorem for group extensions of topological Markov chains based on a construction of σ\sigma-finite conformal measures and give applications to the construction of harmonic functions.Comment: To appear in Proceedings of "New Trends in Onedimensional Dynamics, celebrating the 70th birthday of Welington de Melo

    High-resolution imaging and near-infrared spectroscopy of penumbral decay

    Full text link
    Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.Comment: 14 pages, 11 figures, Accepted to be published in Astronomy and Astrophysic
    corecore