529,225 research outputs found

    A theoretical study of ozone isotopic effects using a modified ab initio potential energy surface

    Get PDF
    A modified ab initio potential energy surface (PES) is used for calculations of ozone recombination and isotopic exchange rate constants. The calculated low-pressure isotopic effects on the ozone formation reaction are consistent with the experimental results and with the theoretical results obtained earlier [J. Chem. Phys. 116, 137 (2002)]. They are thereby relatively insensitive to the properties of these PES. The topics discussed include the dependence of the calculated low-pressure recombination rate constant on the hindered-rotor PES, the role of the asymmetry of the potential for a general X + YZ reaction (Y[not-equal]Z), and the partitioning to form each of the two recombination products: XYZ and XZY

    An Alternative to Spinning Dust for the Microwave Emission of LPH 201.663+1.643: an Ultracompact HII Region

    Get PDF
    The microwave spectral energy distribution of the dusty, diffuse H II region LPH 201.663+1.643 has been interpreted by others as tentative evidence for microwave emission from spinning dust grains. We present an alternative interpretation for that particular object; specifically, that an ultracompact H II region embedded within the dust cloud would explain the available observations as well or better than spinning dust. Parameters for the size, surface brightness, and flux density of the putative ultracompact HII region, derived from the microwave observations, are within known ranges. A possible candidate for such an ultracompact H II region is IRAS 06337+1051, based upon its infrared colors. However, IRAS 06337+1051's infrared flux appears to be too small to be consistent with the microwave flux required for this alternative model to explain the observations.Comment: 11 pages, 3 figures, accepted to ApJ Letter

    Systematic review and quality analysis of emerging diagnostic measures for calcium pyrophosphate crystal deposition disease.

    Get PDF
    ObjectivesCalcium pyrophosphate crystal deposition disease (CPPD) is common, yet prevalence and overall clinical impact remain unclear. Sensitivity and specificity of CPPD reference standards (conventional crystal analysis (CCA) and radiography (CR)) were meta-analysed by EULAR (published 2011). Since then, new diagnostic modalities are emerging. Hence, we updated 2009-2016 literature findings by systematic review and evidence grading, and assessed unmet needs.MethodsWe performed systematic search of full papers (PubMed, Scopus/EMBASE, Cochrane 2009-2016 databases). Search terms included CPPD, chondrocalcinosis, pseudogout, ultrasound, MRI, dual energy CT (DECT). Paper selection, data abstraction, EULAR evidence level, and Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 bias and applicability grading were performed independently by 3 authors.ResultsWe included 26 of 111 eligible papers, which showed emergence in CPPD diagnosis of ultrasound (U/S), and to lesser degree, DECT and Raman spectroscopy. U/S detected CPPD crystals in peripheral joints with sensitivity >80%, superior to CR. However, most study designs, though analytical, yielded low EULAR evidence level. DECT was marginally explored for CPPD, compared with 35 published DECT studies in gout. QUADAS-2 grading indicated strong applicability of U/S, DECT and Raman spectroscopy, but high study bias risk (in ∼30% of papers) due to non-controlled designs, and non-randomised subject selection.ConclusionsThough CCA and CR remain reference standards for CPPD diagnosis, U/S, DECT and Raman spectroscopy are emerging U/S sensitivity appears to be superior to CR. We identified major unmet needs, including for randomised, blinded, controlled studies of CPPD diagnostic performance and rigorous analyses of 4 T MRI and other emerging modalities

    Ageing and Temperature Influence on Polarization/Depolarization Current Behaviour of Paper Immersed in Natural Ester

    No full text
    Transformers play an important role in providing a reliable and efficient electricity supply and are one of the most critical equipments in electric power transmission and distribution systems. The most commonly used liquid in power transformers is mineral oil due to its low price and good properties. However the performance of mineral oil starts to be limited due to environmental consideration [1]. Natural ester insulating fluid offers fire safety, environment and insulation aging advantages over mineral oil and are found to be suitable for the use in transformer insulation system [1]. However, transformer owners require to assess the status of the cellulose insulation in transformer non-destructively. Polarization/depolarization Current (PDC) measurement [2] is one of the non-destructive techniques which have been used to achieve this aim. At the present, there are few publications about the PDC behaviour of natural ester-paper insulation, though the natural ester becomes more widely used in transformers. In this paper, the influence of ageing and temperature on the PDC behaviour of the paper immersed in natural ester and mineral oil were compared. Results show PDC technique can be used to assess the aging condition of the natural-ester paper insulation. The ageing and temperature have similar influence on the PDC behaviour of the paper immersed in natural ester and in mineral oil. The depolarization current of paper immersed in natural ester is lower than that immersed in mineral oil at the same test temperature. The depolarization current of the paper immersed in natural ester and mineral oil increase with the aging time increased. Therefore, the depolarization current can be used to indicate the aging status of natural ester-paper insulation

    Type Ia supernovae as speed sensors at intermediate redshifts

    Full text link
    The application of large scale peculiar velocity (LSPV), as a crucial probe of dark matter, dark energy and gravity, is severely limited by measurement obstacles. We show that fluctuations in type Ia supernovae (SNe Ia) fluxes induced by LSPV offer a promising approach to measure LSPV at intermediate redshifts. In the 3D Fourier space, gravitational lensing, the dominant systematical error, is well suppressed, localized and can be further corrected effectively. Advance in SN observations can further significantly reduce shot noise induced by SN intrinsic fluctuations, which is the dominant statistical error. Robust mapping on the motion of the dark universe through SNe Ia is thus feasible to z0.5z\sim 0.5.Comment: 6 pages, 1 figure. v2: expanded discussions. Accepted to PRD. Also refer to the news report at Physics world http://physicsworld.com/cws/article/news/3509
    corecore