2,109 research outputs found
An acoustic wind measuring technique Scientific report no. 1
Technique for measuring winds using Saturn exhaust noise - acoustic technique, wind profile determined during Saturn SA-9 flight, and data reduction metho
The relationship of storm severity to directionally resolved radio emissions
Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity
Second-harmonic generation microscopy analysis reveals proteoglycan decorin is necessary for proper collagen organization in prostate.
Collagen remodeling occurs in many prostate pathologies; however, the underlying structural architecture in both normal and diseased prostatic tissues is largely unexplored. Here, we use second-harmonic generation (SHG) microscopy to specifically probe the role of the proteoglycan decorin (Dcn) on collagen assembly in a wild type (wt) and Dcn null mouse (Dcn  -    /    -  ). Dcn is required for proper organization of collagen fibrils as it regulates size by forming an arch-like structure at the end of the fibril. We have utilized SHG metrics based on emission directionality (forward-backward ratio) and relative conversion efficiency, which are both related to the SHG coherence length, and found more disordered fibril organization in the Dcn  -    /    -  . We have also used image analysis readouts based on entropy, multifractal dimension, and wavelet transforms to compare the collagen fibril/fiber architecture in the two models, where all these showed that the Dcn  -    /    -   prostate comprised smaller and more disorganized collagen structures. All these SHG metrics are consistent with decreased SHG phase matching in the Dcn  -    /    -   and are further consistent with ultrastructural analysis of collagen in this model in other tissues, which show a more random distribution of fibril sizes and their packing into fibers. As Dcn is a known tumor suppressor, this work forms the basis for future studies of collagen remodeling in both malignant and benign prostate disease
Effect of Various Chlorides and Calcium Carbonate on Calcium Phosphorus, Sodium, Potassium and Chloride Balance and Their Relationship to Urinary Calculi in Lambs
Various salts have been used in ruminant rations in attempts to reduce the incidence of urinary calculi. The relative effectiveness of 0.5 and 1.5% levels of ammonium chloride, calcium chloride, sodium chloride and calcium carbonate for the prevention of urinary calculi in sheep has been reported previously (South Dakota Sheep Field Day Reports, 1965). The studies reported herein were conducted to further determine the edegree of protection afforded sheep against urinary calculi by the feeding of various salts, and to determine their effect on excretion and retention of the minerals
Explanation for Anomalous Shock Temperatures Measured by Neutron Resonance Spectroscopy
Neutron resonance spectrometry (NRS) has been used to measure the temperature
inside Mo samples during shock loading. The temperatures obtained were
significantly higher than predicted assuming ideal hydrodynamic loading. The
effect of plastic flow and non-ideal projectile behavior were assessed. Plastic
flow was calculated self-consistently with the shock jump conditions: this is
necessary for a rigorous estimate of the locus of shock states accessible.
Plastic flow was estimated to contribute a temperature rise of 53K compared
with hydrodynamic flow. Simulations were performed of the operation of the
explosively-driven projectile system used to induce the shock in the Mo sample.
The simulations predicted that the projectile was significantly curved on
impact, and still accelerating. The resulting spatial variations in load,
including radial components of velocity, were predicted to increase the
apparent temperature that would be deduced from the width of the neutron
resonance by 160K. These corrections are sufficient to reconcile the apparent
temperatures deduced using NRS with the accepted properties of Mo, in
particular its equation of state.Comment: near-final version, waiting for final consent from an autho
Automatic mental processes, automatic actions and behaviours in game transfer phenomena: an empirical self-report study using online forum data
Previous studies have demonstrated that the playing of videogames can have both intended and unintended effects. The purpose of this study was to investigate the influence of videogames on players’ mental processes and behaviours in day-to-day settings. A total of 1,023 self-reports from 762 gamers collected from online videogame forums were classified, quantified, described and explained. The data include automatic thoughts, sensations and impulses, automatic mental replays of the game in real life, and voluntary/involuntary behaviours with videogame content. Many gamers reported that they had responded – at least sometimes – to real life stimuli as if they were still playing videogames. This included overreactions, avoidances, and involuntary movements of limbs. These experiences lasted relatively short periods of time but in a minority of players were recurrent. The gamers' experiences appeared to be enhanced by virtual embodiment, repetitive manipulation of game controls, and their gaming habits. However, similar phenomena may also occur when doing other non-gaming activities. The implications of these game transfer experiences are discussed
HTLV-1 Integration into Transcriptionally Active Genomic Regions Is Associated with Proviral Expression and with HAM/TSP
Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ∼5% of infected hosts. The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load (proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells with proviral integration sites within transcription units
High shock release in ultrafast laser irradiated metals: Scenario for material ejection
We present one-dimensional numerical simulations describing the behavior of
solid matter exposed to subpicosecond near infrared pulsed laser radiation. We
point out to the role of strong isochoric heating as a mechanism for producing
highly non-equilibrium thermodynamic states. In the case of metals, the
conditions of material ejection from the surface are discussed in a
hydrodynamic context, allowing correlation of the thermodynamic features with
ablation mechanisms. A convenient synthetic representation of the thermodynamic
processes is presented, emphasizing different competitive pathways of material
ejection. Based on the study of the relaxation and cooling processes which
constrain the system to follow original thermodynamic paths, we establish that
the metal surface can exhibit several kinds of phase evolution which can result
in phase explosion or fragmentation. An estimation of the amount of material
exceeding the specific energy required for melting is reported for copper and
aluminum and a theoretical value of the limit-size of the recast material after
ultrashort laser irradiation is determined. Ablation by mechanical
fragmentation is also analysed and compared to experimental data for aluminum
subjected to high tensile pressures and ultrafast loading rates. Spallation is
expected to occur at the rear surface of the aluminum foils and a comparison
with simulation results can determine a spall strength value related to high
strain rates
- …