2,919 research outputs found
Automated plotting of equipotentials
By substitution of resistance paper for normal plotting paper, an x-y plotter can be used to draw automatically the equipotential lines between components represented in planar form on the paper. This technique is used for high voltage electronic components of complex configuration for the prediction of stress in the intervening insulation
Slide release mechanism
A releasable support device is described which is comprised of a hollow body with a sleeve extending transversely there-through for receiving the end of a support shank. A slider-latch, optionally lubricated, extends through side recesses in the sleeve to straddle the shank, respectively, in latched and released positions. The slider-latch is slid from its latched to its unlatched position by a pressure squib whereupon a spring or other pressure means pushes the shank out of the sleeve. At the same time, a follower element is lodged in and closed the hole in the body wall from which the shank was discharged. The mechanism was designed for the shuttle orbiter/external tank connection device
Mechanism of Molecular Orientation by Single-cycle Pulses
Significant molecular orientation can be achieved by time-symmetric
single-cycle pulses of zero area, in the THz region. We show that in spite of
the existence of a combined time-space symmetry operation, not only large peak
instantaneous orientations but also nonzero time-average orientations over a
rotational period can be obtained. We show that this unexpected phenomenon is
due to interferences among eigenstates of the time-evolution operator, as was
described previously for transport phenomena in quantum ratchets. This
mechanism also works for sequences of identical pulses, spanning a rotational
period. This fact can be used to obtain a net average molecular orientation
regardless of the magnitude of the rotational constant.Comment: Published version may be found at
(URL:http://link.aip.org/link?/JCP/137/044303). Substantial changes with
respect to previous versions, including new titl
A star-forming galaxy at z= 5.78 in the Chandra Deep Field South
We report the discovery of a luminous z = 5.78 star-forming galaxy in the Chandra Deep Field South. This galaxy was selected as an âi-dropâ from the GOODS public survey imaging with the Hubble Space Telescope/Advanced Camera for Surveys (object 3 in the work of Stanway, Bunker & McMahon 2003). The large colour of (iâČâzâČ)AB = 1.6 indicated a spectral break consistent with the Lyman α forest absorption shortward of Lyman α at zâ 6. The galaxy is very compact (marginally resolved with ACS with a half-light radius of 0.08 arcsec, so rhl 5. Our spectroscopic redshift for this object confirms the validity of the iâČ-drop technique of Stanway et al. to select star-forming galaxies atzâ 6
The Las Campanas Infra-red Survey. V. Keck Spectroscopy of a large sample of Extremely Red Objects
(Abridged) We present deep Keck spectroscopy, using the DEIMOS and LRIS
spectrographs, of a large and representative sample of 67 ``Extremely Red
Objects'' (EROs) to H=20.5, with I-H>3.0, in three of the Las Campanas Infrared
Survey fields. Spectroscopic redshifts are determined for 44 sources, of which
only two are contaminating low mass stars. When allowance is made for
incompleteness, the spectroscopic redshift distribution closely matches that
predicted earlier on the basis of photometric data. Our spectra are of
sufficient quality that we can address the important question of the nature and
homogeneity of the z>0.8 ERO population. A dominant old stellar population is
inferred for 75% of our spectroscopic sample; a higher fraction than that seen
in smaller, less-complete samples with broader photometric selection criteria
(e.g. R-K). However, only 28% have spectra with no evidence of recent star
formation activity, such as would be expected for a strictly passively-evolving
population. More than ~30% of our absorption line spectra are of the `E+A' type
with prominent Balmer absorption consistent, on average, with mass growth of
5-15% in the past Gyr. We use our spectroscopic redshifts to improve earlier
estimates of the spatial clustering of this population as well as to understand
the significant field-to-field variation. Our spectroscopy enables us to
pinpoint a filamentary structure at z=1.22 in the Chandra Deep Field South.
Overall, our study suggests that the bulk of the ERO population is an
established population of clustered massive galaxies undergoing intermittent
activity consistent with continued growth over the redshift interval 0.8<z<1.6.Comment: 27 pages, including 14 figures and appendix of spectra (at low
resolution). Full resolution paper can be found at
http://www.ast.cam.ac.uk/~md . To appear in MNRA
Construction and measurements of a vacuum-swing-adsorption radon-mitigation system
Long-lived alpha and beta emitters in the Rn decay chain on (and
near) detector surfaces may be the limiting background in many experiments
attempting to detect dark matter or neutrinoless double-beta decay, and in
screening detectors. In order to reduce backgrounds from radon-daughter
plate-out onto the wires of the BetaCage during its assembly, an
ultra-low-radon cleanroom is being commissioned at Syracuse University using a
vacuum-swing-adsorption radon-mitigation system. The radon filter shows
~20 reduction at its output, from 7.470.56 to 0.370.12
Bq/m, and the cleanroom radon activity meets project requirements, with a
lowest achieved value consistent with that of the filter, and levels
consistently < 2 Bq/m.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT)
2013, Gran Sasso, Italy, April 10-12, 201
Full dimensional (15D) quantum-dynamical simulation of the protonated water-dimer I: Hamiltonian setup and analysis of the ground vibrational state
Quantum-dynamical full-dimensional (15D) calculations are reported for the
protonated water dimer (H5O2+) using the multiconfiguration time-dependent
Hartree (MCTDH) method. The dynamics is described by curvilinear coordinates.
The expression of the kinetic energy operator in this set of coordinates is
given and its derivation, following the polyspherical method, is discussed. The
PES employed is that of Huang et al. [JCP, 122, 044308, (2005)]. A scheme for
the representation of the potential energy surface (PES) is discussed which is
based on a high dimensional model representation scheme (cut-HDMR), but
modified to take advantage of the mode-combination representation of the
vibrational wavefunction used in MCTDH. The convergence of the PES expansion
used is quantified and evidence is provided that it correctly reproduces the
reference PES at least for the range of energies of interest. The reported zero
point energy of the system is converged with respect to the MCTDH expansion and
in excellent agreement (16.7 cm-1 below) with the diffusion Monte Carlo result
on the PES of Huang et al. The highly fluxional nature of the cation is
accounted for through use of curvilinear coordinates. The system is found to
interconvert between equivalent minima through wagging and internal rotation
motions already when in the ground vibrational-state, i.e., T=0. It is shown
that a converged quantum-dynamical description of such a flexible, multi-minima
system is possible.Comment: 46 pages, 5 figures, submitted to J. Chem. Phy
Potential energy and dipole moment surfaces of H3- molecule
A new potential energy surface for the electronic ground state of the
simplest triatomic anion H3- is determined for a large number of geometries.
Its accuracy is improved at short and large distances compared to previous
studies. The permanent dipole moment surface of the state is also computed for
the first time. Nine vibrational levels of H3- and fourteen levels of D3- are
obtained, bound by at most ~70 cm^{-1} and ~ 126 cm^{-1} respectively. These
results should guide the spectroscopic search of the H3- ion in cold gases
(below 100K) of molecular hydrogen in the presence of H3- ions
- âŠ