1,697 research outputs found

    Physical Growth, Biological Age, And Nutritional Transitions Of Adolescents Living At Moderate Altitudes In Peru

    Get PDF
    Background: Peru is experiencing a stage of nutritional transition where the principal characteristics are typical of countries undergoing development. Objectives: The objectives of this study were the following: (a) compare physical growth patterns with an international standard; (b) determine biological age; and (c) analyze the double nutritional burden of adolescents living at a moderate altitude in Peru. Design: Weight, standing height, and sitting height were measured in 551 adolescents of both sexes (12.0 to 17.9 years old) from an urban area of Arequipa, Peru (2328 m). Physical growth was compared with the international standard of the CDC-2000. Biological age was determined by using a non-invasive transversal technique based on years from age at peak height velocity (APHV). Nutritional state was determined by means of weight for age and height for age. Z scores were calculated using international standards from the CDC-2000. Results: Body weight for both sexes was similar to the CDC-2000 international standards. At all ages, the girls' height (p < 0.05) was below the standards. However, the boys' height (p < 0.05) was less at ages, 15, 16, and 17. Biological age showed up in girls at age 12.7 years and for boys at 15.2 years. Stunted growth (8.7% boys and 18.0% girls) and over weight (11.3% boys and 8.8% girls) occurred in both groups. A relationship existed in both sexes between the categories of weight for the age and stunted growth by sex. Conclusions: Adolescents living at a moderate altitude exhibited stunted linear growth and biological maturation. Furthermore, adolescents of both sexes showed the presence of the double nutritional burden (stunted growth and excessive weight).1210120821209

    Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition.

    Get PDF
    BubR1 is essential for the mitotic checkpoint that prevents aneuploidy in cellular progeny by triggering anaphase delay in response to kinetochores incorrectly/not attached to the mitotic spindle. Here, we define the molecular architecture of the functionally significant N-terminal region of human BubR1 and present the 1.8 A crystal structure of its tetratricopeptide repeat (TPR) domain. The structure reveals divergence from the classical TPR fold and is highly similar to the TPR domain of budding yeast Bub1. Shared distinctive features include a disordered loop insertion, a 3(10)-helix, a tight turn involving glycine positive Phi angles, and noncanonical packing of and between the TPR motifs. We also define the molecular determinants of the interaction between BubR1 and kinetochore protein Blinkin. We identify a shallow groove on the concave surface of the BubR1 TPR domain that forms multiple discrete and potentially cooperative interactions with Blinkin. Finally, we present evidence for a direct interaction between BubR1 and Bub1 mediated by regions C-terminal to their TPR domains. This interaction provides a mechanism for Bub1-dependent kinetochore recruitment of BubR1. We thus present novel molecular insights into the structure of BubR1 and its interactions at the kinetochore-microtubule interface. Our studies pave the way for future structure-directed engineering aimed at dissecting the roles of kinetochore-bound and other pools of BubR1 in vivo

    Streaming flow by oscillating bubbles: Quantitative diagnostics via particle tracking velocimetry

    Get PDF
    Oscillating microbubbles can be used as microscopic agents. Using external acoustic fields they are able to set the surrounding fluid into motion, Erode surfaces and even to carry particles attached to their interfaces. Although the acoustic streaming flow that the bubble generates in its vicinity has been often observed, it has never been measured and quantitatively compared with the available theoretical models. The scarcity of quantitative data is partially due to the strong three-dimensional character of bubble-induced streaming flows, which demands advanced velocimetry techniques. In this work, we present quantitative measurements of the flow generated by single and pairs of acoustically excited sessile microbubbles using a three-dimensional particle tracking technique. Using this novel experimental approach we are able to obtain the bubble's resonant oscillating frequency, study the boundaries of the linear oscillation regime, give predictions on the flow strength and the shear in the surrounding surface and study the flow and the stability of a two-bubble system. Our results show that velocimetry techniques are a suitable tool to make diagnostics on the dynamics of acoustically excited microbubbles

    Young tableau reconstruction via minors

    Full text link
    The tableau reconstruction problem, posed by Monks (2009), asks the following. Starting with a standard Young tableau TT, a 1-minor of TT is a tableau obtained by first deleting any cell of TT, and then performing jeu de taquin slides to fill the resulting gap. This can be iterated to arrive at the set of kk-minors of TT. The problem is this: given kk, what are the values of nn such that every tableau of size nn can be reconstructed from its set of kk-minors? For k=1k=1, the problem was recently solved by Cain and Lehtonen. In this paper, we solve the problem for k=2k=2, proving the sharp lower bound n≥8n \geq 8. In the case of multisets of kk-minors, we also give a lower bound for arbitrary kk, as a first step toward a sharp bound in the general multiset case.Comment: 24 pages, 18 figure
    • …
    corecore