40 research outputs found

    09501 Abstracts Collection -- Software Synthesis

    Get PDF
    From 06.12.09 to 11.12.09, the Dagstuhl Seminar 09501 ``Software Synthesis \u27\u27 in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers

    Mining Specifications

    No full text
    Program verification is a promising approach to improving program quality, because it can search all possible program executions for specific errors. However, the need to formally describe correct behavior or errors is a major barrier to the widespread adoption of program verification, since programmers historically have been reluctant to write formal specifications. Automating the process of formulating specifications would remove a barrier to program verification and enhance its practicality.This paper describes specification mining, a machine learning approach to discovering formal specifications of the protocols that code must obey when interacting with an application program interface or abstract data type. Starting from the assumption that a working program is well enough debugged to reveal strong hints of correct protocols, our tool infers a specification by observing program execution and concisely summarizing the frequent interaction patterns as state machines that capture both temporal and data dependencies. These state machines can be examined by a programmer, to refine the specification and identify errors, and can be utilized by automatic verification tools, to find bugs.Our preliminary experience with the mining tool has been promising. We were able to learn specifications that not only captured the correct protocol, but also discovered serious bugs

    Interaction cost: for when event counts just don't add up

    No full text
    corecore