168 research outputs found
Object Affordances Tune Observers' Prior Expectations about Tool-Use Behaviors
Learning about the function and use of tools through observation requires the ability to exploit one's own knowledge derived from past experience. It also depends on the detection of low-level local cues that are rooted in the tool's perceptual properties. Best known as ‘affordances’, these cues generate biomechanical priors that constrain the number of possible motor acts that are likely to be performed on tools. The contribution of these biomechanical priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, and how, affordances interact with higher-order expectations that are generated from past experience – i.e. probabilistic exposure – to enable observational learning of tool use. To address this question we designed an action observation task in which participants were required to infer, under various conditions of visual uncertainty, the intentions of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a particular tool function and the biomechanical optimality of the observed movement were varied. We demonstrate that biomechanical priors modulate the extent to which participants' predictions are influenced by probabilistically-induced prior expectations. Biomechanical and probabilistic priors have a cumulative effect when they ‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to suboptimal behaviors)
Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model
Plasmacytoid dendritic cells (pDCs) have long been implicated in the pathogenesis of lupus. However, this conclusion has been largely based on a correlative link between the copious production of IFN-α/β by pDCs and the IFN-α/β “signature” often seen in human lupus patients. The specific contribution of pDCs to disease in vivo has not been investigated in detail. For this reason, we generated a strain of BXSB lupus-prone mice in which pDCs can be selectively depleted in vivo. Early, transient ablation of pDCs before disease initiation resulted in reduced splenomegaly and lymphadenopathy, impaired expansion and activation of T and B cells, reduced antibodies against nuclear autoantigens and improved kidney pathology. Amelioration of pathology coincided with decreased transcription of IFN-α/β–induced genes in tissues. PDC depletion had an immediate impact on the activation of immune cells, and importantly, the beneficial effects on pathology were sustained even though pDCs later recovered, indicating an early pDC contribution to disease. Together, our findings demonstrate a critical function for pDCs during the IFN-α/β–dependent initiation of autoimmune lupus and point to pDCs as an attractive therapeutic target for the treatment of SLE
Involvement of TLR2 in Recognition of Acute Gammaherpesvirus-68 Infection
Toll-like receptors (TLRs) play a crucial role in the activation of innate immunity in response to many viruses. We previously reported the implication of TLR2 in the recognition of Epstein-Barr virus (EBV) by human monocytes. Because murine gammaherpesvirus-68 (MHV-68) is a useful model to study human gammaherpesvirus pathogenesis in vivo, we evaluated the importance of mouse TLR2 in the recognition of MHV-68.In studies using transfected HEK293 cells, MHV-68 lead to the activation of NF-κB reporter through TLR2. In addition, production of interleukin-6 (IL-6) and interferon-α (IFN-α) upon MHV-68 stimulation was reduced in murine embryonic fibroblasts (MEFs) derived from TLR2-/- and MyD88-/- mice as compared to their wild type (WT) counterpart. In transgenic mice expressing a luciferase reporter gene under the control of the mTLR2 promoter, MHV-68 challenge activated TLR2 transcription. Increased expression levels of TLR2 on blood granulocytes (CD115(-)Gr1(+)) and inflammatory monocytes (CD115(+)Gr1(+)), which mobilized to the lungs upon infection with MHV-68, was also confirmed by flow cytometry. Finally, TLR2 or MyD88 deficiency was associated with decreased IL-6 and type 1 IFN production as well as increased viral burden during short-term challenges with MHV-68.TLR2 contributes to the production of inflammatory cytokines and type 1 IFN as well as to the control of viral burden during infection with MHV-68. Taken together, our results suggest that the TLR2 pathway has a relevant role in the recognition of this virus and in the subsequent activation of the innate immune response
CD11b+, Ly6G+ Cells Produce Type I Interferon and Exhibit Tissue Protective Properties Following Peripheral Virus Infection
The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b+Ly6C+Ly6G- monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b+Ly6C+Ly6G+ cells. The phenotype of the CD11b+Ly6C+Ly6G+ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b+Ly6C+Ly6G+ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b+Ly6C+Ly6G+ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G+ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b+Ly6C+Ly6G+ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction
TLR9-Dependent and Independent Pathways Drive Activation of the Immune System by Propionibacterium Acnes
Propionibacterium acnes is usually a relatively harmless commensal. However, under certain, poorly understood conditions it is implicated in the etiology of specific inflammatory diseases. In mice, P. acnes exhibits strong immunomodulatory activity leading to splenomegaly, intrahepatic granuloma formation, hypersensitivity to TLR ligands and endogenous cytokines, and enhanced resistance to infection. All these activities reach a maximum one week after P. acnes priming and require IFN-γ and TLR9. We report here the existence of a markedly delayed (1–2 weeks), but phenotypically similar TLR9-independent immunomodulatory response to P. acnes. This alternative immunomodulation is also IFN-γ dependent and requires functional MyD88. From our experiments, a role for MyD88 in the IFN-γ-mediated P. acnes effects seems unlikely and the participation of the known MyD88-dependent receptors, including TLR5, Unc93B-dependent TLRs, IL-1R and IL-18R in the development of the alternative response has been excluded. However, the crucial role of MyD88 can partly be attributed to TLR2 and TLR4 involvement. Either of these two TLRs, activated by bacteria and/or endogenously generated ligands, can fulfill the required function. Our findings hint at an innate immune sensitizing mechanism, which is potentially operative in both infectious and sterile inflammatory disorders
Chemoproteomics reveals Toll-like receptor fatty acylation
Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity.
This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular
interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification
and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to
identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.
Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been
previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new
proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was
uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2
S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased
inflammatory response to microbial ligands.
Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell
type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation
of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue
for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)
A Toll-Like Receptor 2 Pathway Regulates the Ppargc1a/b Metabolic Co-Activators in Mice with Staphylococcal aureus Sepsis
Activation of the host antibacterial defenses by the toll-like receptors (TLR) also selectively activates energy-sensing and metabolic pathways, but the mechanisms are poorly understood. This includes the metabolic and mitochondrial biogenesis master co-activators, Ppargc1a (PGC-1α) and Ppargc1b (PGC-1β) in Staphylococcus aureus (S. aureus) sepsis. The expression of these genes in the liver is markedly attenuated inTLR2−/− mice and markedly accentuated in TLR4−/− mice compared with wild type (WT) mice. We sought to explain this difference by using specific TLR-pathway knockout mice to test the hypothesis that these co-activator genes are directly regulated through TLR2 signaling. By comparing their responses to S. aureus with WT mice, we found that MyD88-deficient and MAL-deficient mice expressed hepatic Ppargc1a and Ppargc1b normally, but that neither gene was activated in TRAM-deficient mice. Ppargc1a/b activation did not require NF-kβ, but did require an interferon response factor (IRF), because neither gene was activated in IRF-3/7 double-knockout mice in sepsis, but both were activated normally in Unc93b1-deficient (3d) mice. Nuclear IRF-7 levels in TLR2−/− and TLR4−/− mice decreased and increased respectively post-inoculation and IRF-7 DNA-binding at the Ppargc1a promoter was demonstrated by chromatin immunoprecipitation. Also, a TLR2-TLR4-TRAM native hepatic protein complex was detected by immunoprecipitation within 6 h of S. aureus inoculation that could support MyD88-independent signaling to Ppargc1a/b. Overall, these findings disclose a novel MyD88-independent pathway in S. aureus sepsis that links TLR2 and TLR4 signaling in innate immunity to Ppargc1a/b gene regulation in a critical metabolic organ, the liver, by means of TRAM, TRIF, and IRF-7
Human Integrin α3β1 Regulates TLR2 Recognition of Lipopeptides from Endosomal Compartments
Toll-like receptor (TLR)-2/TLR1 heterodimers recognize bacterial lipopeptides and initiate the production of inflammatory mediators. Adaptors and co-receptors that mediate this process, as well as the mechanisms by which these adaptors and co-receptors function, are still being discovered.Using shRNA, blocking antibodies, and fluorescent microscopy, we show that U937 macrophage responses to the TLR2/1 ligand, Pam(3)CSK(4), are dependent upon an integrin, α(3)β(1). The mechanism for integrin α(3)β(1) involvement in TLR2/1 signaling is through its role in endocytosis of lipopeptides. Using inhibitors of endosomal acidification/maturation and physical tethering of the ligand, we show that the endocytosis of Pam(3)CSK(4) is necessary for the complete TLR2/1-mediated pro-inflammatory cytokine response. We also show that TLR2/1 signaling from the endosome results in the induction of different inflammatory mediators than TLR2/1 signaling from the plasma membrane.Here we identify integrin α(3)β(1) as a novel regulator for the recognition of bacterial lipopeptides. We demonstrate that induction of a specific subset of cytokines is dependent upon integrin α(3)β(1)-mediated endocytosis of the ligand. In addition, we address an ongoing controversy regarding endosomal recognition of bacterial lipopeptides by demonstrating that TLR2/1 signals from within endosomal compartments as well as the plasma membrane, and that downstream responses may differ depending upon receptor localization. We propose that the regulation of endosomal TLR2/1 signaling by integrin α(3)β(1) serves as a mechanism for modulating inflammatory responses
- …