16,171 research outputs found

    Subcritical Superstrings

    Get PDF
    We introduce the Liouville mode into the Green-Schwarz superstring. Like massive supersymmetry without central charges, there is no kappa symmetry. However, the second-class constraints (and corresponding Wess-Zumino term) remain, and can be solved by (twisted) chiral superspace in dimensions D=4 and 6. The matter conformal anomaly is c = 4-D < 1. It thus can be canceled for physical dimensions by the usual Liouville methods, unlike the bosonic string (for which the consistency condition is c = D <= 1).Comment: 9 pg., compressed postscript file (.ps.Z), other formats (.dvi, .ps, .ps.Z, 8-bit .tex) available at http://insti.physics.sunysb.edu/~siegel/preprints/ or at ftp://max.physics.sunysb.edu/preprints/siege

    Energy and width measurements of low-Z pionic X-ray transitions

    Get PDF
    High resolution spectrometric measurement of energy and natural line widths of 2p-1s pionic X ray transitions, as well as muonic transition energies in Li, Be, B, and C isotope

    A new measurement of the lifetime of the positive pion

    Get PDF
    Digital timing method for measuring positive pion lifetim

    Versatile liquid helium scintillation counter of large volume design

    Get PDF
    Design and performance of large liquid helium scintillation counter for meson experiment

    Giant radiation heat transfer through the micron gaps

    Full text link
    Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.Comment: 4 pages, 3 figure

    Psychological Impact of Significantly Short Stature

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142466/1/apa199180s37714.pd

    Proximity Effects in Radiative Transfer

    Get PDF
    Though the dependence of near-field radiative transfer on the gap between two planar objects is well understood, that between curved objects is still unclear. We show, based on the analysis of the surface polariton mediated radiative transfer between two spheres of equal radii RR and minimum gap dd, that the near--field radiative transfer scales as R/dR/d as d/R0d/R \rightarrow 0 and as ln(R/d)\ln(R/d) for larger values of d/Rd/R up to the far--field limit. We propose a modified form of the proximity approximation to predict near--field radiative transfer between curved objects from simulations of radiative transfer between planar surfaces.Comment: 5 journal pages, 4 figure

    The Vector-Tensor Supermultiplet with Gauged Central Charge

    Get PDF
    The vector-tensor multiplet is coupled off-shell to an N=2 vector multiplet such that its central charge transformations are realized locally. A gauged central charge is a necessary prerequisite for a coupling to supergravity and the strategy underlying our construction uses the potential for such a coupling as a guiding principle. The results for the action and transformation rules take a nonlinear form and necessarily include a Chern-Simons term. After a duality transformation the action is encoded in a homogeneous holomorphic function consistent with special geometry.Comment: 8 pages, LATE

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Get PDF
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    A Comparison and Joint Analysis of Sunyaev-Zel'dovich Effect Measurements from Planck and Bolocam for a set of 47 Massive Galaxy Clusters

    Get PDF
    We measure the SZ signal toward a set of 47 clusters with a median mass of 9.5×10149.5 \times 10^{14} M_{\odot} and a median redshift of 0.40 using data from Planck and the ground-based Bolocam receiver. When Planck XMM-like masses are used to set the scale radius θs\theta_{\textrm{s}}, we find consistency between the integrated SZ signal, Y5R500Y_{\textrm{5R500}}, derived from Bolocam and Planck based on gNFW model fits using A10 shape parameters, with an average ratio of 1.069±0.0301.069 \pm 0.030 (allowing for the 5\simeq 5% Bolocam flux calibration uncertainty). We also perform a joint fit to the Bolocam and Planck data using a modified A10 model with the outer logarithmic slope β\beta allowed to vary, finding β=6.13±0.16±0.76\beta = 6.13 \pm 0.16 \pm 0.76 (measurement error followed by intrinsic scatter). In addition, we find that the value of β\beta scales with mass and redshift according to βM0.077±0.026×(1+z)0.06±0.09\beta \propto M^{0.077 \pm 0.026} \times (1+z)^{-0.06 \pm 0.09}. This mass scaling is in good agreement with recent simulations. We do not observe the strong trend of β\beta with redshift seen in simulations, though we conclude that this is most likely due to our sample selection. Finally, we use Bolocam measurements of Y500Y_{500} to test the accuracy of the Planck completeness estimate. We find consistency, with the actual number of Planck detections falling approximately 1σ1 \sigma below the expectation from Bolocam. We translate this small difference into a constraint on the the effective mass bias for the Planck cluster cosmology results, with (1b)=0.93±0.06(1-b) = 0.93 \pm 0.06.Comment: Updated to include one additional co-author. Also some minor changes to the text based on initial feedbac
    corecore