733,616 research outputs found

    Model Dependence of the 2H Electric Dipole Moment

    Full text link
    Background: Direct measurement of the electric dipole moment (EDM) of the neutron lies in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3P1 channel, the latter being sensitive to the off-shell behavior of the 3P1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the 2H EDM until such time as a better than 10% measurement is obtained.Comment: 21 pages, 2 figures, submitted to Physical Review

    The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    Full text link
    Galactic gas-gas collisions involving a turbulent multiphase ISM share common ISM properties: dense extraplanar gas visible in CO, large linewidths (>= 50 km/s), strong mid-infrared H_2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ICM ram pressure stripping, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion within the disk. The cloud size is determined by the size of a C-type shock propagating in dense molecular clouds with a low ionization fraction at a given velocity dispersion. We give expressions for the expected volume and area filling factors, mass, density, column density, and velocity dispersion of the clouds. The latter is based on scaling relations of intermittent turbulence whose open parameters are estimated for the CND in the Galactic Center. The properties of the model gas clouds and the external mass accretion rate necessary for the quenching of the star formation rate due to adiabatic compression are consistent with those derived from high-resolution H_2 line observations. Based on these findings, a scenario for the evolution of gas tori in galactic centers is proposed and the implications for star formation in the Galactic Center are discussed.Comment: 13 pages, 1 figure, accepted for publication by A&

    Thermally-driven Neutron Star Glitches

    Get PDF
    We examine the thermal and dynamical response of a neutron star to a sudden perturbation of the inner crust temperature. During the star's evolution, starquakes and other processes may deposit \gap 10^{42} ergs, causing significant internal heating and increased frictional coupling between the crust and the more rapidly rotating neutron superfluid the star is expected to contain. Through numerical simulation we study the propagation of the thermal wave created by the energy deposition, the induced motion of the interior superfluid, and the resulting spin evolution of the crust. We find that energy depositions of ∼1040\sim 10^{40} ergs produce gradual spin-ups above the timing noise level, while larger energy depositions produce sudden spin jumps resembling pulsar glitches. For a star with a temperature in the observed range of the Vela pulsar, an energy deposition of ∼1042\sim 10^{42} ergs produces a large spin-up taking place over minutes, similar to the Vela ``Christmas'' glitch. Comparable energy deposition in a younger and hotter ``Crab-like'' star produces a smaller spin-up taking place over ∼1\sim 1 day, similar to that seen during the partially time-resolved Crab glitch of 1989.Comment: 21 pages plus 17 figures, uuencode compressed Postscript. Accepted for publication in the Astrophysical Journa

    The Z^0-tagged jet event asymmetry in heavy-ion collisions at the CERN Large Hadron Collider

    Full text link
    Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of Z^0/gamma^*-tagged jet events in sqrt{s}=2.76$ TeV reactions at the LHC. Our results combine the O(G_F\alpha_s^2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense QCD matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.Comment: 4 pages, 4 figures, as published in PR

    Bott - Borel - Weil Construction For Quantum Supergroup Uq(gl(m|n))

    Full text link
    The finite dimensional irreducible representations of the quantum supergroup Uq(gl(m∣n))U_q(gl(m|n)) are constructed geometrically using techniques from the Bott - Borel - Weil theory and vector coherent states.Comment: Latex, 22 page

    Spin-fluctuation theory beyond Gaussian approximation

    Full text link
    A characteristic feature of the Gaussian approximation in the functional-integral approach to the spin-fluctuation theory is the jump phase transition to the paramagnetic state. We eliminate the jump and obtain a continuous second-order phase transition by taking into account high-order terms in the expansion of the free energy in powers of the fluctuating exchange field. The third-order term of the free energy renormalizes the mean field, and fourth-order term, responsible for the interaction of the fluctuations, renormalizes the spin susceptibility. The extended theory is applied to the calculation of magnetic properties of Fe-Ni Invar.Comment: 20 pages, 4 figure

    Third Harmonic Cavity Modal Analysis

    Get PDF
    Third harmonic cavities have been designed and fabricated by FNAL to be used at the FLASH/XFEL facility at DESY to minimise the energy spread along the bunches. Modes in these cavities are analysed and the sensitivity to frequency errors are assessed. A circuit model is employed to model the monopole bands. The monopole circuit model is enhanced to include successive cell coupling, in addition to the usual nearest neighbour coupling. A mode matching code is used to facilitate rapid simulations, incorporating fabrication errors. Curves surfaces are approximated by a series of abrupt transitions and the validity of this approach is examinedComment: Proceedings of 14th International Conference on RF Superconductivity (SRF 2009), 2009, Berlin, German
    • …
    corecore