391 research outputs found
Integrable relativistic systems given by Hamiltonians with momentum-spin-orbit coupling
In the paper we investigate the evolution of the relativistic particle
(massive and massless) with spin defined by Hamiltonian containing the terms
with momentum-spin-orbit coupling. We integrate the corresponding Hamiltonian
equations in quadratures and express their solutions in terms of elliptic
functions.Comment: 18 page
Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.
OBJECTIVE: Differentiating pathologic and physiologic high-frequency oscillations (HFOs) is challenging. In patients with focal epilepsy, HFOs occur during the transitional periods between the up and down state of slow waves. The preferred phase angles of this form of phase-event amplitude coupling are bimodally distributed, and the ripples (80-150 Hz) that occur during the up-down transition more often occur in the seizure-onset zone (SOZ). We investigated if bimodal ripple coupling was also evident for faster sleep oscillations, and could identify the SOZ.
METHODS: Using an automated ripple detector, we identified ripple events in 40-60 min intracranial electroencephalography (iEEG) recordings from 23 patients with medically refractory mesial temporal lobe or neocortical epilepsy. The detector quantified epochs of sleep oscillations and computed instantaneous phase. We utilized a ripple phasor transform, ripple-triggered averaging, and circular statistics to investigate phase event-amplitude coupling.
RESULTS: We found that at some individual recording sites, ripple event amplitude was coupled with the sleep oscillatory phase and the preferred phase angles exhibited two distinct clusters (p \u3c 0.05). The distribution of the pooled mean preferred phase angle, defined by combining the means from each cluster at each individual recording site, also exhibited two distinct clusters (p \u3c 0.05). Based on the range of preferred phase angles defined by these two clusters, we partitioned each ripple event at each recording site into two groups: depth iEEG peak-trough and trough-peak. The mean ripple rates of the two groups in the SOZ and non-SOZ (NSOZ) were compared. We found that in the frontal (spindle, p = 0.009; theta, p = 0.006, slow, p = 0.004) and parietal lobe (theta, p = 0.007, delta, p = 0.002, slow, p = 0.001) the SOZ incidence rate for the ripples occurring during the trough-peak transition was significantly increased.
SIGNIFICANCE: Phase-event amplitude coupling between ripples and sleep oscillations may be useful to distinguish pathologic and physiologic events in patients with frontal and parietal SOZ
Relationships Between Two Approaches: Rigged Configurations and 10-Eliminations
There are two distinct approaches to the study of initial value problem of
the periodic box-ball systems. One way is the rigged configuration approach due
to Kuniba--Takagi--Takenouchi and another way is the 10-elimination approach
due to Mada--Idzumi--Tokihiro. In this paper, we describe precisely
interrelations between these two approaches.Comment: 16 pages, final version, minor revisio
Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure
ntrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters
Thermorheology of living cells: impact of temperature variations on cell mechanics
Upon temperature changes, we observe a systematic shift of creep
compliance curves J (t) for single living breast epithelial cells. We use a
dual-beam laser trap (optical stretcher) to induce temperature jumps within
milliseconds, while simultaneously measuring the mechanical response of whole
cells to optical force. The cellular mechanical response was found to differ
between sudden temperature changes compared to slow, long-term changes
implying adaptation of cytoskeletal structure. Interpreting optically induced cell
deformation as a thermorheological experiment allows us to consistently explain
data on the basis of time–temperature superposition, well known from classical
polymer physics. Measured time shift factors give access to the activation
energy of the viscous flow of MCF-10A breast cells, which was determined
to be 80 kJ mol−1. The presented measurements highlight the fundamental
role that temperature plays for the deformability of cellular matter. We propose
thermorheology as a powerful concept to assess the inherent material properties
of living cells and to investigate cell regulatory responses upon environmental
changes
Complex thermorheology of living cells
Temperature has a reliable and nearly instantaneous influence onmechanical responses of cells.As recently
published, MCF-10Anormal epithelial breast cells follow the time–temperature superposition (TTS)
principle. Here,wemeasured thermorheological behaviour of eightcommoncell types within
physiologically relevant temperatures and appliedTTS to creep compliance curves.Our results showed that
superposition is not universal and was seen in four of the eight investigated cell types. For the other cell
types, transitions of thermorheological responses were observed at 36 °C.Activation energies (EA)were
calculated for all cell types and ranged between 50 and 150 kJmol−1.The scaling factors of the superposition
of creep curves were used to group the cell lines into three categories. They were dependent on relaxation
processes aswell as structural composition of the cells in response tomechanical load and temperature
increase.This study supports the view that temperature is a vital parameter for comparing cell rheological
data and should be precisely controlledwhen designing experiments
Contagion or Confusion? Why Conflicts Cluster in Space
Civil wars cluster in space as well as time. In this study, we develop and evaluate empirically alternative explanations for this observed clustering. We consider whether the spatial pattern of intrastate conflict simply stems from a similar distribution of relevant country attributes or whether conflicts indeed constitute a threat to other proximate states. Our results strongly suggest that there is a genuine neighborhood effect of armed conflict, over and beyond what individual country characteristics can account for. We then examine whether the risk of contagion depends on the degree of exposure to proximate conflicts. Contrary to common expectations, this appears not to be the case. Rather, we find that conflict is more likely when there are ethnic ties to groups in a neighboring conflict and that contagion is primarily a feature of separatist conflicts. This suggests that transnational ethnic linkages constitute a central mechanism of conflict contagion. © 2008 International Studies Association
One - play, two - play, five - play, and ten-play runs of Prisoner's Dilemma 1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66600/2/10.1177_002200276601000307.pd
Thermal instability of cell nuclei
DNA is known to be a mechanically and thermally stable structure. In its double
stranded form it is densely packed within the cell nucleus and is thermo-resistant
up to 70 °C. In contrast, we found a sudden loss of cell nuclei integrity at
relatively moderate temperatures ranging from 45 to 55 °C. In our study, suspended
cells held in an optical double beam trap were heated under controlled
conditions while monitoring the nuclear shape. At specific critical temperatures,
an irreversible sudden shape transition of the nuclei was observed. These temperature
induced transitions differ in abundance and intensity for various normal
and cancerous epithelial breast cells, which clearly characterizes different cell
types. Our results show that temperatures slightly higher than physiological
conditions are able to induce instabilities of nuclear structures, eventually
leading to cell death. This is a surprising finding since recent thermorheological
cell studies have shown that cells have a lower viscosity and are thus more
deformable upon temperature increase. Since the nucleus is tightly coupled to
the outer cell shape via the cytoskeleton, the force propagation of nuclear
reshaping to the cell membrane was investigated in combination with the
application of cytoskeletal drugs
Fronto-striatal projections regulate innate avoidance behavior
The dorsomedial prefrontal cortex (dmPFC) has been linked to avoidance and decision-making under conflict, key neural computations altered in anxiety disorders. However, the heterogeneity of prefrontal projections has obscured identification of specific top-down projections involved. While the dmPFC-amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that dmPFC-dorsomedial striatum (DMS) projections may be more important for regulating avoidance. Using fiber photometry recordings in both male and female mice during the elevated zero maze task, we show heightened neural activity in frontostriatal but not frontoamygdalar projection neurons during exploration of the anxiogenic open arms. Additionally, using optogenetics, we demonstrate that this frontostriatal projection preferentially excites postsynaptic D1 receptor-expressing neurons in the DMS and causally controls innate avoidance behavior. These results support a model for prefrontal control of defensive behavior in which the dmPFC-amygdala projection controls reflexive fear behavior and the dmPFC-striatum projection controls anxious avoidance behavior.SIGNIFICANCE STATEMENT The medial prefrontal cortex has been extensively linked to several behavioral symptom domains related to anxiety disorders, with much of the work centered around reflexive fear responses. Comparatively little is known at the mechanistic level about anxious avoidance behavior, a core feature across anxiety disorders. Recent work has suggested that the striatum may be an important hub for regulating avoidance behaviors. Our work uses optical circuit dissection techniques to identify a specific corticostriatal circuit involved in encoding and controlling avoidance behavior. Identifying neural circuits for avoidance will enable the development of more targeted symptom-specific treatments for anxiety disorders
- …
