5,347 research outputs found
Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions
It has been shown recently that the problem of rapid proton decay induced by
dimension five operators arising from the exchange of colored Higgsinos can be
simply avoided in grand unified models where a fifth spatial dimension is
compactified on an orbifold. Here we demonstrate that this idea can be used to
solve the Higgsino-mediated proton decay problem in any realistic SO(10) model
by lifting that model to five dimensions. A particular SO(10) model that has
been proposed to explain the pattern of quark and lepton masses and mixings is
used as an example. The idea is to break the SO(10) down to the Pati-Salam
symmetry by the orbifold boundary conditions. The entire four-dimensional
SO(10) model is placed on the physical SO(10) brane except for the gauge
fields, the 45 and a single 10 of Higgs fields, which are placed in the
five-dimensional bulk. The structure of the Higgs superpotential can be
somewhat simplified in doing so, while the Yukawa superpotential and mass
matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded
discussion of the suppression of dim-5 proton decay operator
Mathematical and computational studies of equilibrium capillary free surfaces
The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated
Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models
The study for lepton flavor violation combined with the neutrino oscillation
may provide more information about the lepton flavor structure of the grand
unified theory. In this paper, we study two lepton flavor violation processes,
and , in the context of supersymmetric SO(10)
grand unified models. We find the two processes are both of phenomenological
interest. In particular the latter may be important in some supersymmetric
parameter space where the former is suppressed. Thus, Z-dacay may offer another
chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
Charged lepton contributions to the solar neutrino mixing and theta_13
A charged lepton contribution to the solar neutrino mixing induces a
contribution to theta_13, barring cancellations/correlations, which is
independent of the model building options in the neutrino sector. We illustrate
two robust arguments for that contribution to be within the expected
sensitivity of high intensity neutrino beam experiments. We find that the case
in which the neutrino sector gives rise to a maximal solar angle (the natural
situation if the hierarchy is inverse) leads to a theta_13 close to or
exceeding the experimental bound depending on the precise values of theta_12,
theta_23, an unknown phase and possible additional contributions. We finally
discuss the possibility that the solar angle originates predominantly in the
charged lepton sector. We find that the construction of a model of this sort is
more complicated. We comment on a recent example of natural model of this type.Comment: 10 pages, 1 figur
Bound-State Model of Weak and Strong Interactions
The pion-nucleon coupling constant is calculated from first principles by use of the N/D matrix method. Three models are introduced which contain pions, nucleons, and weakly interacting intermediate bosons of the scalar, pseudoscalar, and vector variety. The basic interactions are taken to be parity and isotopic spin conserving. Certain physical assumptions in the nature of boundary conditions and the known fact that the weak coupling is very weak, together with use of the Born approximation for N, enable us to obtain an eigenvalue equation which expresses the pion-nucleon coupling constant in terms of the three masses in the problem. The correct value for gπ^2 can be obtained for an intermediate vector meson of mass comparable to the nucleon mass with essentially no cutoff employed; on the other hand, the experimental value is also obtained with a spin-zero boson and a relatively small cutoff energy
Resonant leptogenesis in a predictive SO(10) grand unified model
An SO(10) grand unified model considered previously by the authors featuring
lopsided down quark and charged lepton mass matrices is successfully predictive
and requires that the lightest two right-handed Majorana neutrinons be nearly
degenerate in order to obtain the LMA solar neutrino solution. Here we use this
model to test its predictions for baryogenesis through resonant-enhanced
leptogenesis. With the conventional type I seesaw mechanism, the best
predictions for baryogenesis appear to fall a factor of three short of the
observed value. However, with a proposed type III seesaw mechanism leading to
three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is
decoupled from the neutrino mass and mixing issues with successful baryogenesis
easily obtained.Comment: 22 pages including 1 figure; published version with reference adde
Increased risk for other cancers in individuals with Ewing sarcoma and their relatives.
BackgroundThere are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks.MethodsUsing a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives.ResultsCancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives.ConclusionsThis analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives
Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the -network
Semiconductor glasses exhibit many unique optical and electronic anomalies.
We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508
(2010)) in which several of these anomalies arise from deep midgap electronic
states residing on high-strain regions intrinsic to the activated transport
above the glass transition. Here we demonstrate at the molecular level how this
scenario is realized in an important class of semiconductor glasses, namely
chalcogen and pnictogen containing alloys. Both the glass itself and the
intrinsic electronic midgap states emerge as a result of the formation of a
network composed of -bonded atomic -orbitals that are only weakly
hybridized. Despite a large number of weak bonds, these -networks are
stable with respect to competing types of bonding, while exhibiting a high
degree of structural degeneracy. The stability is rationalized with the help of
a hereby proposed structural model, by which -networks are
symmetry-broken and distorted versions of a high symmetry structure. The latter
structure exhibits exact octahedral coordination and is fully
covalently-bonded. The present approach provides a microscopic route to a fully
consistent description of the electronic and structural excitations in vitreous
semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J.
Chem. Phy
Texture of fermion mass matrices in partially unified theories
We investigate the texture of fermion mass matrices in theories with partial
unification (for example ) at a scale
GeV. Starting with the low energy values of the masses and the
mixing angles, we find only two viable textures with atmost four texture zeros.
One of these corresponds to a somewhat modified Fritzsch textures. A
theoretical derivataion of these textures leads to new interesting relations
among the masses and the mixing angles.Comment: 10 pages(Latex
- …
