14 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effects of different drying treatments on fungal population and ochratoxin A occurrence in sultana type grapes

    No full text
    This study aimed to determine the changes in mould and ochratoxin A (OTA) occurrence in sultanas under three different conventional drying conditions. Five different vineyards were chosen, and the three different treatments were applied to these grapes while drying. At the end of the drying process, total mould and black aspergilli (BA) populations in the samples varied from 2.45 to 5.61 log colony-forming units (CFU) g– 1 and from 0 to 4.92 log CFU g– 1, respectively. Significant increases (p < 0.05) occurred in mould loads depending on the extending drying period. However, independent of vineyard location, all the samples treated with cold dipping solution showed the lowest fungal loads. These results indicate that dipping solution treatment was the most effective drying method to minimise fungal infection of grapes. The expected results could not be achieved by drying grapes artificially contaminated with ochratoxigenic Aspergillus carbonarius spores. Seventy-one of 96 isolates (73.95%) obtained during drying were Aspergillus spp., and the remaining (n = 25, 26.05%) belonged to other genera, such as Penicillium, Trichoderma and Cladosporium. Grape juice-based agar medium was used to determine the realistic OTA production capacities of the isolated mould strains. The highest OTA production capacities were 809.70 ± 9.19, 87.58 ± 16.89 and 45.44 ± 18.78 ng g–1 in 50% grape juice agar (GJ50), all five of which were from A. niger isolates. OTA was not present in any sample during the drying period; however, OTA was detected in two samples at 0.32 ± 0.15 and 0.52 ± 0.36 µg kg– 1 after the end of the drying process. The limit of detection (LOD) and limit of quantitation (LOQ) of the method used for detecting OTA in samples were 0.1 and 0.3 µg kg– 1, respectively. © 2016 Informa UK Limited, trading as Taylor & Francis Group

    Effects of different drying treatments on fungal population and ochratoxin A occurrence in sultana type grapes.

    No full text
    This study aimed to determine the changes in mould and ochratoxin A (OTA) occurrence in sultanas under three different conventional drying conditions. Five different vineyards were chosen, and the three different treatments were applied to these grapes while drying. At the end of the drying process, total mould and black aspergilli (BA) populations in the samples varied from 2.45 to 5.61 log colony-forming units (CFU) g(-)(1) and from 0 to 4.92 log CFU g(-)(1), respectively. Significant increases (p < 0.05) occurred in mould loads depending on the extending drying period. However, independent of vineyard location, all the samples treated with cold dipping solution showed the lowest fungal loads. These results indicate that dipping solution treatment was the most effective drying method to minimise fungal infection of grapes. The expected results could not be achieved by drying grapes artificially contaminated with ochratoxigenic Aspergillus carbonarius spores. Seventy-one of 96 isolates (73.95%) obtained during drying were Aspergillus spp., and the remaining (n = 25, 26.05%) belonged to other genera, such as Penicillium, Trichoderma and Cladosporium. Grape juice-based agar medium was used to determine the realistic OTA production capacities of the isolated mould strains. The highest OTA production capacities were 809.70 ± 9.19, 87.58 ± 16.89 and 45.44 ± 18.78 ng g(-1) in 50% grape juice agar (GJ50), all five of which were from A. niger isolates. OTA was not present in any sample during the drying period; however, OTA was detected in two samples at 0.32 ± 0.15 and 0.52 ± 0.36 µg kg(-)(1) after the end of the drying process. The limit of detection (LOD) and limit of quantitation (LOQ) of the method used for detecting OTA in samples were 0.1 and 0.3 µg kg(-)(1), respectively
    corecore