703 research outputs found

    PreprintResolver: Improving Citation Quality by Resolving Published Versions of ArXiv Preprints using Literature Databases

    Full text link
    The growing impact of preprint servers enables the rapid sharing of time-sensitive research. Likewise, it is becoming increasingly difficult to distinguish high-quality, peer-reviewed research from preprints. Although preprints are often later published in peer-reviewed journals, this information is often missing from preprint servers. To overcome this problem, the PreprintResolver was developed, which uses four literature databases (DBLP, SemanticScholar, OpenAlex, and CrossRef / CrossCite) to identify preprint-publication pairs for the arXiv preprint server. The target audience focuses on, but is not limited to inexperienced researchers and students, especially from the field of computer science. The tool is based on a fuzzy matching of author surnames, titles, and DOIs. Experiments were performed on a sample of 1,000 arXiv-preprints from the research field of computer science and without any publication information. With 77.94 %, computer science is highly affected by missing publication information in arXiv. The results show that the PreprintResolver was able to resolve 603 out of 1,000 (60.3 %) arXiv-preprints from the research field of computer science and without any publication information. All four literature databases contributed to the final result. In a manual validation, a random sample of 100 resolved preprints was checked. For all preprints, at least one result is plausible. For nine preprints, more than one result was identified, three of which are partially invalid. In conclusion the PreprintResolver is suitable for individual, manually reviewed requests, but less suitable for bulk requests. The PreprintResolver tool (https://preprintresolver.eu, Available from 2023-08-01) and source code (https://gitlab.com/ippolis_wp3/preprint-resolver, Accessed: 2023-07-19) is available online.Comment: Accepted for International Conference on Theory and Practice of Digital Libraries (TPDL 2023

    Off-label use in germany - a current appraisal of gynaecologic university departments

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The off-label use, referring to the applicability of pharmaceutical drugs beyond the submitted and from the Federal Institute for Drugs and Medical Devices (BfArM, Bundesamt für Arzneimittel und Medizinprodukte) certified and approved administration, is the subject of controversial discussions. the application can be considered in case of severe illness - if no therapeutic alternatives are available - or it exists as a founded perspective for achieving therapeutic success.</p> <p>Methods</p> <p>A latitudinal study for evaluating the application of off-label use supplements was performed at 43 German university and academic teaching hospitals. Five doctors at each hospital applied off-label pharmaceutical drugs and were called upon to share their personal experience to the application of those medications.</p> <p>Results</p> <p>75 (35%) questionnaires were returned out of 22 (51%) medical centres with 215 contacted physicians. Off-label use was common for 65 (91%) of the physicians. Only 9% of them obviate the application of off-label drugs. About a half of the medication is related to application in obstetrics (54%) and in most cases on an every day basis. Uterotonics were the most commonly used off-label medications (34%). The main part of information about off-label use is obtained from personal information of colleagues (66%) and personal experience (58%). 34% of physicians think that off label use is risky. Interestingly, the view about off label use of medication varies considerably among physicians from various hospitals.</p> <p>Conclusions</p> <p>The application of off-label pharmaceutical drugs in Germany seems to be a well established practice. More than 90% of participators of our trial use at least one medication outside the administration. This includes particularly prostaglandins, anti-hyper-tonic therapeutics and chemotherapeutics.</p

    Accelerating Binary String Comparisons with a Scalable, Streaming-Based System Architecture Based on FPGAs

    Get PDF
    Pilz S, Porrmann F, Kaiser M, Hagemeyer J, Hogan JM, Rückert U. Accelerating Binary String Comparisons with a Scalable, Streaming-Based System Architecture Based on FPGAs. Algorithms. 2020;13(2): 47.This paper is concerned with Field Programmable Gate Arrays (FPGA)-based systems for energy-efficient high-throughput string comparison. Modern applications which involve comparisons across large data sets—such as large sequence sets in molecular biology—are by their nature computationally intensive. In this work, we present a scalable FPGA-based system architecture to accelerate the comparison of binary strings. The current architecture supports arbitrary lengths in the range 16 to 2048-bit, covering a wide range of possible applications. In our example application, we consider DNA sequences embedded in a binary vector space through Locality Sensitive Hashing (LSH) one of several possible encodings that enable us to avoid more costly character-based operations. Here the resulting encoding is a 512-bit binary signature with comparisons based on the Hamming distance. In this approach, most of the load arises from the calculation of the O ( m ∗ n ) Hamming distances between the signatures, where m is the number of queries and n is the number of signatures contained in the database. Signature generation only needs to be performed once, and we do not consider it further, focusing instead on accelerating the signature comparisons. The proposed FPGA-based architecture is optimized for high-throughput using hundreds of computing elements, arranged in a systolic array. These core computing elements can be adapted to support other string comparison algorithms with little effort, while the other infrastructure stays the same. On a Xilinx Virtex UltraScale+ FPGA (XCVU9P-2), a peak throughput of 75.4 billion comparisons per second—of 512-bit signatures—was achieved, using a design with 384 parallel processing elements and a clock frequency of 200 MHz. This makes our FPGA design 86 times faster than a highly optimized CPU implementation. Compared to a GPU design, executed on an NVIDIA GTX1060, it performs nearly five times faster

    Complete Draft Genome Sequence of the Actinobacterium Nocardiopsis sinuspersici UTMC102 (DSM 45277T), Which Produces Serine Protease.

    Get PDF
    Tokovenko B, Rückert C, Kalinowski J, et al. Complete Draft Genome Sequence of the Actinobacterium Nocardiopsis sinuspersici UTMC102 (DSM 45277T), Which Produces Serine Protease. Genome Announc. 2017;5(20): e00362-17.The genome sequence of alkalohalophilic actinobacterium Nocardiopsis sinuspersici UTMC102 is provided. N. sinuspersici UTMC102 produces a highly active serine alkaline protease, and contains at least 11 gene clusters encoding the biosynthesis of secondary metabolites. The N. sinuspersici UTMC102 genome was assembled into a single chromosomal scaffold

    Complete genome sequence of Paenibacillus riograndensis SBR5T, a Gram-positive diazotrophic rhizobacterium

    Get PDF
    AbstractPaenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5T. The genome of P. riograndensis SBR5T consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5T can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5T as plant growth-promoting rhizobacterium

    Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.

    Get PDF
    Hillion M, Bernhardt J, Busche T, et al. Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep. 2017;7(1): 1195.Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols

    Environmental exposure and sensitization patterns in a Swiss alpine pediatric cohort

    Get PDF
    Background The level of environmental exposure throughout life may contribute to the prevalence of allergic sensitization and allergic disease. The alpine climate has been considered a healthy climate with little allergen exposure and pollution. We conducted a cross-sectional study to investigate local environmental exposure and concomitant prevalence of allergic sensitization among local school children born and raised in an alpine environment. Methods Clinical and demographic data were collected with a questionnaire. Allergen content was assessed in residential settled dust samples, lifetime exposure to pollen and air pollution was calculated using data from national pollen and air pollution monitoring stations, and the allergic sensitization profile was determined with component resolved diagnostics (ISAC®). Univariate and multivariate regression models were used to estimate the relation between exposure and sensitization. Results In a cohort of children born and raised in an alpine environment, sensitization to aeroallergens is quite common (38%), especially to grass (33%) and cat (16%). House dust mite allergen was detected in up to 38% of residential dust samples, but sensitization to HDM was low (2.5%). Pollutant levels were low, but an increasing trend was observed in the amount of ozone and PM10. Living close to a busy road was associated with increased odds OR (95% CI) for being sensitized to any allergen 2.7 (1.0–7.2), to outdoor allergens 2.8 (1.1–7.1) and being sensitized plus reporting symptoms of rhinoconjunctivitis 4.4 (1.3–14.8) and asthma 5.5 (1.4–21). Indoor living conditions, including the presence of visible mold, increased the odds of being sensitized to indoor allergens (1.9 (1.1–3.2) and being sensitized plus reporting symptoms of rhinoconjunctivitis 1.9 (1.0–3.6) and asthma 2.1 (1.0–4.1). Conclusion In a healthy alpine environment, pollution might still be an important factor contributing to allergic sensitization

    High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation

    Get PDF
    HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design

    Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications.

    Get PDF
    BACKGROUND: Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY: Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION: Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition
    • …
    corecore