16 research outputs found

    Knowledge systems, health care teams, and clinical practice: a study of successful change

    Get PDF
    Clinical teams are of growing importance to healthcare delivery, but little is known about how teams learn and change their clinical practice. We examined how teams in three US hospitals succeeded in making significant practice improvements in the area of antimicrobial resistance. This was a qualitative cross-case study employing Soft Knowledge Systems as a conceptual framework. The purpose was to describe how teams produced, obtained, and used knowledge and information to bring about successful change. A purposeful sampling strategy was used to maximize variation between cases. Data were collected through interviews, archival document review, and direct observation. Individual case data were analyzed through a two-phase coding process followed by the cross-case analysis. Project teams varied in size and were multidisciplinary. Each project had more than one champion, only some of whom were physicians. Team members obtained relevant knowledge and information from multiple sources including the scientific literature, experts, external organizations, and their own experience. The success of these projects hinged on the teams' ability to blend scientific evidence, practical knowledge, and clinical data. Practice change was a longitudinal, iterative learning process during which teams continued to acquire, produce, and synthesize relevant knowledge and information and test different strategies until they found a workable solution to their problem. This study adds to our understanding of how teams learn and change, showing that innovation can take the form of an iterative, ongoing process in which bits of K&I are assembled from multiple sources into potential solutions that are then tested. It suggests that existing approaches to assessing the impact of continuing education activities may overlook significant contributions and more attention should be given to the role that practical knowledge plays in the change process in addition to scientific knowledge

    Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    Get PDF
    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil

    Surface water linkages regulate trophic interactions in a groundwater food web

    No full text
    Groundwaters are increasingly viewed as resource- limited ecosystems in which fluxes of dissolved organic carbon (DOC) from surface water are effi- ciently mineralized by a consortium of microorgan- isms which are grazed by invertebrates. We tested for the effect of groundwater recharge on resource supply and trophic interactions by measuring phys- ico-chemistry, microbial activity and biomass, structure of bacterial communities and invertebrate density at three sites intensively recharged with surface water. Comparison of measurements made in recharge and control well clusters at each site showed that groundwater recharge significantly increased fluxes of DOC and phosphate, elevated groundwater temperature, and diminished dissolved oxygen (DO). Microbial biomass and activity were significantly higher in recharge well clusters but stimulation of autochthonous microorganisms was not associated with a major shift in bacterial community structure. Invertebrate assemblages were not significantly more abundant in recharge well clusters and did not show any relationship with microbial biomass and activity. Microbial communities were bottom-up regulated by DOC and nutrient fluxes but trophic interactions between microorganisms and invertebrates were apparently limited by environmental stresses, particularly DO depletion and groundwater warming. Hydrological connectivity is a key factor regulating the function of DOC-based groundwater food webs as it influ- ences both resource availability for microorganisms and environmental stresses which affect energy transfer to invertebrates and top-down control on microorganisms
    corecore