63 research outputs found
Adhesion of surfaces via particle adsorption: Exact results for a lattice of fluid columns
We present here exact results for a one-dimensional gas, or fluid, of
hard-sphere particles with attractive boundaries. The particles, which can
exchange with a bulk reservoir, mediate an interaction between the boundaries.
A two-dimensional lattice of such one-dimensional gas `columns' represents a
discrete approximation of a three-dimensional gas of particles between two
surfaces. The effective particle-mediated interaction potential of the
boundaries, or surfaces, is calculated from the grand-canonical partition
function of the one-dimensional gas of particles, which is an extension of the
well-studied Tonks gas. The effective interaction potential exhibits two
minima. The first minimum at boundary contact reflects depletion interactions,
while the second minimum at separations close to the particle diameter results
from a single adsorbed particle that crosslinks the two boundaries. The second
minimum is the global minimum for sufficiently large binding energies of the
particles. Interestingly, the effective adhesion energy corresponding to this
minimum is maximal at intermediate concentrations of the particles.Comment: to appear in Journal of Statistical Mechanics: Theory and Experimen
Dentin dysplasia type I
This paper describes a rare case of genetically determined dentin dysplasia type I in 26-year-old male patient. The paper highlights anatomical and radiological aspects of dental abnormalities and emphasizes the significance of the education of both general practitioners and paediatricians as regards referring patients with diagnosed dentin dysplasia for a multi-specialty therapy.
The Łojasiewicz Exponent at Infinity of Non-negative and Non-degenerate Polynomials
Let f be a real polynomial, non-negative at infinity with non-compact zero-set. Suppose that f is non-degenerate in the Kushnirenko sense at infinity. In this paper we give a formula for the Łojasiewicz exponent at infinity of f and a formula for the exponent of growth of f in terms of its Newton polyhedron
Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS)
The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web, and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers
Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments.
Compartmentalisation of cellular processes is fundamental to regulation of metabolism in Eukaryotic organisms and is primarily provided by membrane-bound organelles. These organelles are dynamic structures whose membrane barriers are continually shaped, remodelled and scaffolded by a rich variety of highly sophisticated protein complexes. Towards the goal of bottom-up assembly of compartmentalised protocells in synthetic biology, we believe it will be important to harness and reconstitute the membrane shaping and sculpting characteristics of natural cells. We review different in vitro membrane models and how biophysical investigations of minimal systems combined with appropriate theoretical modelling have been used to gain new insights into the intricate mechanisms of these membrane nanomachines, paying particular attention to proteins involved in membrane fusion, fission and cytoskeletal scaffolding processes. We argue that minimal machineries need to be developed and optimised for employment in artificial protocell systems rather than the complex environs of a living organism. Thus, well-characterised minimal components might be predictably combined into functional, compartmentalised protocellular materials that can be engineered for wide-ranging applications
Mechanical unfolding of proteins – comparative non-equilibrium molecular dynamics study
Mechanical signals regulate functions of mechanosensitive proteins by inducing structural changes that are determinant for force-dependent interactions. Talin is a focal adhesion protein that is known to extend under mechanical load, and it has been shown to unfold via intermediate states. Here, we compared different nonequilibrium molecular dynamics (MD) simulations to study unfolding of the talin rod. We combined boxed MD (BXD), steered MD, and umbrella sampling (US) techniques and provide free energy profiles for unfolding of talin rod subdomains. We conducted BXD, steered MD, and US simulations at different detail levels and demonstrate how these different techniques can be used to study protein unfolding under tension. Unfolding free energy profiles determined by BXD suggest that the intermediate states in talin rod subdomains are stabilized by force during unfolding, and US confirmed these results
Metodologia badania wrażliwości prognozy stanu technicznego maszyn
W pracy rozpatrzono problem wrażliwości prognozy w zależności od czynników eksploatacyjnych maszyn. Przedstawiono koncepcję programu symulacyjnego do badania wrażliwości prognozy stanu maszyn. Przeprowadzone wstępne badania pozwalają na sformułowanie wniosków odnośnie potrzeby i możliwości badania wrażliwości prognozy stanu maszyn w aspekcie wykorzystania metodyki wyznaczania prognozy w dynamicznym systemie eksploatacji maszyn
On the expressiveness of Büchi arithmetic
We show that the existential fragment of B¨uchi arithmetic is strictly less expressive than full B¨uchi arithmetic of any base, and moreover establish that its Σ2-fragment is already expressively complete. Furthermore, we show that regular languages of polynomial growth are
definable in the existential fragment of B¨uchi arithmetic
- …