8 research outputs found
The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection
Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies
Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes
A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus