5 research outputs found

    Impact of Numerical Methods in Thermal Modeling of Li-Ion Batteries on Temperature Distribution and Computation Time

    Get PDF
    Thermal battery modeling is important for further battery development and optimization. The temperature strongly influences the performance and aging behavior. In the cell stack, electrochemical processes take place resulting in a large amount of heat release, which, in turn, affects the temperature distribution. Therefore, the main focus is on the cell stack, the most complex structure inside the cell. In particular, the discontinuous and anisotropic material properties represent a major challenge for simulations due to the layering. This work proposes self-developed methods, based on the Finite Volume Method and the Finite Element Method, taking on these challenges. First, for both methods the functionality is verified and numerical convergence is validated. These, and also classical methods, are compared based on test problems with a known analytical solution in view of numerical errors as well as computing time. It if found that their accuracy and efficiency depends strongly on the specific problem, which makes their numerical investigation necessary and inevitable. Second, the methods are evaluated on a specific battery problem. Their results are plausible and correspond to the physical phenomena

    OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine

    Get PDF
    Phase I of the OC6 project is focused on examining why offshore wind design tools underpredict the response (loads/motion) of the OC5-DeepCwind semisubmersible at its surge and pitch natural frequencies. Previous investigations showed that the underprediction was primarily related to nonlinear hydrodynamic loading, so two new validation campaigns were performed to separately examine the different hydrodynamic load components. In this paper, we validate a variety of tools against this new test data, focusing on the ability to accurately model the low-frequency loads on a semisubmersible floater when held fixed under wave excitation and when forced to oscillate in the surge direction. However, it is observed that models providing better load predictions in these two scenarios do not necessarily produce a more accurate motion response in a moored configuration.The authors would like to acknowledge the support of the MARINET2 project (European Union’s Horizon 2020 grant agreement 731084), which supplied the tank test time and travel support to accomplish the testing campaign. The support of MARIN in the preparation, execution of the modeltests, and the evaluation of the uncertainties was essential for this study. MARIN’s contribution was partly funded by the Dutch Ministry of Economic Affairs through TKI-ARD funding programs. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes
    corecore