1,893 research outputs found

    Center of Mass and spin for isolated sources of gravitational radiation

    Get PDF
    We define the center of mass and spin of an isolated system in General Relativity. The resulting relationships between these variables and the total linear and angular momentum of the gravitational system are remarkably similar to their Newtonian counterparts, though only variables at the null boundary of an asymptotically flat spacetime are used for their definition. We also derive equations of motion linking their time evolution to the emitted gravitational radiation. The results are then compared to other approaches. In particular one obtains unexpected similarities as well as some differences with results obtained in the Post Newtonian literature . These equations of motion should be useful when describing the radiation emitted by compact sources such as coalescing binaries capable of producing gravitational kicks, supernovas, or scattering of compact objects.Comment: 16 pages. Accepted for publication in Phys. Rev.

    A non-Markovian optical signature for detecting entanglement in coupled excitonic qubits

    Full text link
    We identify an optical signature for detecting entanglement in experimental nanostructure systems comprising coupled excitonic qubits. This signature owes its strength to non-Markovian dynamical effects in the second-order temporal coherence function of the emitted radiation. We calculate autocorrelation and cross-correlation functions for both selective and collective light excitation, and prove that the coherence properties of the emitted light do indeed carry information about the entanglement of the initial multi-qubit state. We also show that this signature can survive in the presence of a noisy environment.Comment: 4 pages, 4 color figures. Minor changes. Accepted version to be published in Europhysics Letter

    Ultrafast optical signature of quantum superpositions in a nanostructure

    Full text link
    We propose an unambiguous signature for detecting quantum superposition states in a nanostructure, based on current ultrafast spectroscopy techniques. The reliable generation of such superposition states via Hadamard-like quantum gates is crucial for implementing solid-state based quantum information schemes. The signature originates from a remarkably strong photon antibunching effect which is enhanced by non-Markovian dynamics.Comment: 4 pages, 2 figures. Published in Phys. Rev. B (Rapid Communications

    New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions

    Full text link
    We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions (QPTs) in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and hence provide a time-resolved understanding of QPTs encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other, and for adiabatic quantum computing schemes.Comment: 5 pages, 3 figures, plus supplementary material (6 pages, 1 figure

    Nonequilibrium dynamics of polariton entanglement in a cluster of coupled traps

    Full text link
    We study in detail the generation and relaxation of quantum coherences (entanglement) in a system of coupled polariton traps. By exploiting a Lie algebraic based super-operator technique we provide an analytical exact solution for the Markovian dissipative dynamics (Master equation) of such system which is valid for arbitrary cluster size, polariton-polariton interaction strength, temperature and initial state. Based on the exact solution of the Master equation at T=0K, we discuss how dissipation affects the quantum entanglement dynamics of coupled polariton systems.Comment: 5 pages, 2 figures, SLAFES XIX contribution pape

    Large dynamic light-matter entanglement from driving neither too fast nor too slow

    Full text link
    A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a new regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at \emph{intermediate} velocities. This enhancement is far larger and broader-ranged than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.Comment: 7 pages, 7 figure

    Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement

    Full text link
    We show that the quantum phase transition arising in a standard radiation-matter model (Dicke model) belongs to the same universality class as the infinitely-coordinated, transverse field XY model. The effective qubit-qubit exchange interaction is shown to be proportional to the square of the qubit-radiation coupling. A universal finite-size scaling is derived for the corresponding two-qubit entanglement (concurrence) and a size-consistent effective Hamiltonian is proposed for the qubit subsystem.Comment: 4 pages, 3 figures. Minor changes. Published versio

    Robust quantum correlations in out-of-equilibrium matter-light systems

    Full text link
    High precision macroscopic quantum control in interacting light-matter systems remains a significant goal toward novel information processing and ultra-precise metrology. We show that the out-of-equilibrium behavior of a paradigmatic light-matter system (Dicke model) reveals two successive stages of enhanced quantum correlations beyond the traditional schemes of near-adiabatic and sudden quenches. The first stage features magnification of matter-only and light-only entanglement and squeezing due to effective non-linear self-interactions. The second stage results from a highly entangled light-matter state, with enhanced superradiance and signatures of chaotic and highly quantum states. We show that these new effects scale up consistently with matter system size, and are reliable even in dissipative environments.Comment: 14 pages, 6 figure

    Vanishing Cosmological Constant in Modified Gauss-Bonnet Gravity with Conformal Anomaly

    Get PDF
    We consider dark energy cosmology in a de Sitter universe filled with quantum conformal matter. Our model represents a Gauss-Bonnet model of gravity with contributions from quantum effects. To the General Relativity action an arbitrary function of the GB invariant, f(G), is added, and taking into account quantum effects from matter the cosmological constant is studied. For the considered model the conditions for a vanishing cosmological constant are considered. Creation of a de Sitter universe by quantum effects in a GB modified gravity is discussed.Comment: 8 pages latex, 1 figure. To appear in Int. J. Mod. Phys.
    • …
    corecore