9 research outputs found

    What Ukraine Taught NATO about Hybrid Warfare

    Get PDF
    Russia’s invasion of Ukraine in 2022 forced the United States and its NATO partners to be confronted with the impact of hybrid warfare far beyond the battlefield. Targeting Europe’s energy security, Russia’s malign influence campaigns and malicious cyber intrusions are affecting global gas prices, driving up food costs, disrupting supply chains and grids, and testing US and Allied military mobility. This study examines how hybrid warfare is being used by NATO’s adversaries, what vulnerabilities in energy security exist across the Alliance, and what mitigation strategies are available to the member states. Cyberattacks targeting the renewable energy landscape during Europe’s green transition are increasing, making it urgent that new tools are developed to protect these emerging technologies. No less significant are the cyber and information operations targeting energy security in Eastern Europe as it seeks to become independent from Russia. Economic coercion is being used against Western and Central Europe to stop gas from flowing. China’s malign investments in Southern and Mediterranean Europe are enabling Beijing to control several NATO member states’ critical energy infrastructure at a critical moment in the global balance of power. What Ukraine Taught NATO about Hybrid Warfare will be an important reference for NATO officials and US installations operating in the European theater.https://press.armywarcollege.edu/monographs/1952/thumbnail.jp

    Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats

    Full text link
    Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinc- tion of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra- thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.NIH (RO1MH065961)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83237/1/orsiniNLM09.pd

    Neural and cellular mechanisms of fear and extinction memory formation

    No full text
    corecore