486 research outputs found
Liquid-Solid Transition of Hard Spheres Under Gravity
We investigate the liquid-solid transition of two dimensional hard spheres in
the presence of gravity. We determine the transition temperature and the
fraction of particles in the solid regime as a function of temperature via
Even-Driven molecular dynamics simulations and compare them with the
theoretical predictions. We then examine the configurational statistics of a
vibrating bed from the view point of the liquid-solid transition by explicitly
determining the transition temperature and the effective temperature, T, of the
bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
On manifolds with nonhomogeneous factors
We present simple examples of finite-dimensional connected homogeneous spaces
(they are actually topological manifolds) with nonhomogeneous and nonrigid
factors. In particular, we give an elementary solution of an old problem in
general topology concerning homogeneous spaces
Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well
We study photoluminescence (PL) of charged excitons () in narrow
asymmetric quantum wells in high magnetic fields B. The binding of all
states strongly depends on the separation of electron and hole layers.
The most sensitive is the ``bright'' singlet, whose binding energy decreases
quickly with increasing even at relatively small B. As a result, the
value of B at which the singlet--triplet crossing occurs in the spectrum
also depends on and decreases from 35 T in a symmetric 10 nm GaAs well
to 16 T for nm. Since the critical values of at which
different states unbind are surprisingly small compared to the well
width, the observation of strongly bound states in an experimental PL
spectrum implies virtually no layer displacement in the sample. This casts
doubt on the interpretation of PL spectra of heterojunctions in terms of
recombination
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
Why don't some men with banked sperm respond to letters about their stored samples?
Long-term storage of banked sperm, especially when it is not needed, for reproductive purposes, is costly and poses practical problems for sperm banks. For sperm banks to function efficiently, men must understand the implications of unnecessary storage, and make timely decisions about disposal of their own samples. Men who bank sperm prior to cancer treatment are routinely offered follow-up consultations to test their fertility, update consent and, where necessary, expedite referral for Assisted Conception. Yet sperm banks report that men do not respond to letters, suggesting samples are stored needlessly. We conducted semi-structured interviews with six men with a history of not responding to letters, to document reasons for non-response. Interviews were transcribed and analysed using Interpretive Phenomenological Analysis. Men's reasons for not responding are a complex interplay between past, present and future perspectives. In terms of their past, information is important on diagnosis, because men must understand that fertility can change after treatment. Present and future concerns focus on fears of being told fertility has not recovered and being pressured to dispose of banked sperm. The challenge is to devise invitation letters that address men's concerns while offering them tangible benefits and peace of mind
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production
We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24 h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-β, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury
A precision six-load-component transducer: A design incorporating finite-length measurement paths
The design of an instrument is described that measures three resultant force components and three resultant moment components acting on a surface. Within the framework of linear elastostatics of an isotropic homogeneous material the device separates to a given precision the six resultant load components. Sensor paths of finite length are employed. Moreover if fiber-optic differential displacement sensors are used rather than traditional electrical resistance strain gages, the range and sensitivity of the instrument can in principle be improved without sacrificing the device stiffness. The primary reason for these improvements is that a complete solution to the equations of elasticity allows certain displacements to be measured over large distances and be combined to yield all of the resultant load components. These displacement measurements over a long distance accommodates the use of fiber-optic interferometric sensors. The use of optical sensors in contrast with electrical-resistance gages, has the potential to allow the measurement precision and range to scale with the geometry of the device rather than the maximum strain in the instrument. It becomes possible by virtue of these features to produce a better instrument.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43934/1/11340_2006_Article_BF02322149.pd
Charmless Hadronic Two-Body B Meson Decays
We report the results of a study of two-body B meson decays to the complete
set of K pi, pi pi, and K K final states. The study is performed on a data
sample of 31.7 +/- 0.3 million B B-bar events recorded on the Upsilon(4S)
resonance by the Belle experiment at KEKB. We observe significant signals in
all K pi final states and in the pi+ pi- and pi+ pi0 final states. We set
limits on the pi0 pi0 and K K final states. A search is performed for
partial-rate asymmetries between conjugate states for flavor-specific final
states.Comment: Submitted to PR
- …