181 research outputs found

    The effects of classic and variant infectious bursal disease viruses on lymphocyte populations in specific-pathogen-free White Leghorn chickens

    Get PDF
    Infectious bursal disease virus (IBDV) is a pathogen that primarily infects B lymphocytes in domestic avian species. This viral infection has been associated with immunosuppression, clinical disease/mortality, and enteric malabsorption effects. The purpose of this experiment was to compare the effects of a classic (USDA-STC) and a new variant IBDV (RB-4, known to induce primarily the enteric disease) on immune cell populations in lymphoid organs. Seventeen-dayold specific-pathogen-free (SPF) White Leghorn chickens were either not infected (control) or inoculated with either USDA-STC or RB-4 IBD viral isolate. On days 3 and 5 post-inoculation (PI), lymphoid tissues were collected to prepare cell suspensions for immunofluorescent staining and cell population analysis by flow cytometry. Portions of the tissues were snap frozen for immunohistochemistry to localize various immune cells and IBD virus in the tissues. Tissue homogenates were prepared to test for IBDV by quantitative MTT assay. Both the USDA-STC and RB-4 viruses greatly altered lymphocyte populations in the spleen and bursa. At 5 d PI, bursal B cells were approximately 25% and 60% of lymphocytes in chicks infected with USDA-STC and RB-4, respectively, whereas in control birds, B cells constituted 99% of bursal lymphocytes. This reduction in the proportions of bursal B cells was associated with an infiltration of T cells. In the spleen, IBDV infection also reduced the percentage of B cells and increased the percentage of T cells. The differential effects of classic and variant IBDV infection on immune cell populations in lymphoid organs may explain the differences in clinical effects induced by these viruse

    The self-force on a static scalar test-charge outside a Schwarzschild black hole

    Get PDF
    The finite part of the self-force on a static scalar test-charge outside a Schwarzschild black hole is zero. By direct construction of Hadamard's elementary solution, we obtain a closed-form expression for the minimally coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form expression, we compute the necessary external force required to hold the charge stationary. Although the energy associated with the scalar field contributes to the renormalized mass of the particle (and thereby its weight), we find there is no additional self-force acting on the charge. This result is unlike the analogous electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation using Carter's mass-variation theorem for black holes. The primary motivation for this calculation is to develop techniques and formalism for computing all forces - dissipative and non-dissipative - acting on charges and masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form electrostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series solutions.Comment: RevTeX, To Appear in Phys. Rev.

    Post-Newtonian Gravitational Radiation and Equations of Motion via Direct Integration of the Relaxed Einstein Equations. I. Foundations

    Get PDF
    We present a self-contained framework called Direct Integration of the Relaxed Einstein Equations (DIRE) for calculating equations of motion and gravitational radiation emission for isolated gravitating systems based on the post-Newtonian approximation. We cast the Einstein equations into their ``relaxed'' form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve the equations formally as a retarded integral over the past null cone of the field point (chosen to be within the near zone when calculating equations of motion, and in the far zone when calculating gravitational radiation). The ``inner'' part of this integral(within a sphere of radius R\cal R \sim one gravitational wavelength) is approximated in a slow-motion expansion using standard techniques; the ``outer'' part, extending over the radiation zone, is evaluated using a null integration variable. We show generally and explicitly that all contributions to the inner integrals that depend on R\cal R cancel corresponding terms from the outer integrals, and that the outer integrals converge at infinity, subject only to reasonable assumptions about the past behavior of the source. The method cures defects that plagued previous ``brute-force'' slow-motion approaches to motion and gravitational radiation for isolated systems. We detail the procedure for iterating the solutions in a weak-field, slow-motion approximation, and derive expressions for the near-zone field through 3.5 post-Newtonian order in terms of Poisson-like potentials.Comment: 43 pages, RevTeX, 3 figures, submitted to Physical Review

    General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars

    Get PDF
    We analyze the coupling between the internal degrees of freedom of neutron stars in a close binary, and the stars' orbital motion. Our analysis is based on the method of matched asymptotic expansions and is valid to all orders in the strength of internal gravity in each star, but is perturbative in the ``tidal expansion parameter'' (stellar radius)/(orbital separation). At first order in the tidal expansion parameter, we show that the internal structure of each star is unaffected by its companion, in agreement with post-1-Newtonian results of Wiseman (gr-qc/9704018). We also show that relativistic interactions that scale as higher powers of the tidal expansion parameter produce qualitatively similar effects to their Newtonian counterparts: there are corrections to the Newtonian tidal distortion of each star, both of which occur at third order in the tidal expansion parameter, and there are corrections to the Newtonian decrease in central density of each star (Newtonian ``tidal stabilization''), both of which are sixth order in the tidal expansion parameter. There are additional interactions with no Newtonian analogs, but these do not change the central density of each star up to sixth order in the tidal expansion parameter. These results, in combination with previous analyses of Newtonian tidal interactions, indicate that (i) there are no large general-relativistic crushing forces that could cause the stars to collapse to black holes prior to the dynamical orbital instability, and (ii) the conventional wisdom with respect to coalescing binary neutron stars as sources of gravitational-wave bursts is correct: namely, the finite-stellar-size corrections to the gravitational waveform will be unimportant for the purpose of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result unchange

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2
    corecore