901 research outputs found

    On the Rates of Type Ia Supernovae in Dwarf and Giant Hosts with ROTSE-IIIb

    Get PDF
    We present a sample of 23 spectroscopically confirmed Type Ia supernovae that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z = 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNeIa in a given volume is an important concern, especially the relative frequency of high to low-luminosity SNeIa. We find that the pAMD derived from the volume limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNeIa in a volume limited (z<0.12) sub sample of the SDSS-II. The LOSS sample requires far more low-luminosity SNeIa than the SDSS-II can accommodate. Even though LOSS and SDSS-II have sampled different SNeIa populations, their volumetric rates are surprisingly similar. Using the same model pAMD adopted in the SDSS-II SNeIa rate calculation and excluding two high-luminosity SNeIa from our sample, we derive a rate that is marginally higher than previous low-redshift determinations. With our full sample and the LOSS pAMD our rate is more than double the canonical value. We also find that 5 of our 18 SNeIa are hosted by very low-luminosity (M_B > -16) galaxies, whereas only 1 out 79 nearby SDSS-II SNeIa have such faint hosts. It is possible that previous works have under-counted either low luminosity SNeIa, SNeIa in low luminosity hosts, or peculiar SNeIa (sometimes explicitly), and the total SNeIa rate may be higher than the canonical value.Comment: 18 pages; accepted for publication in The Astronomical Journa

    SN 2010jl in UGC 5189: Yet another luminous type IIn supernova in a metal-poor galaxy

    Full text link
    We present ASAS data starting 25 days before the discovery of the recent type IIn SN 2010jl, and we compare its light curve to other luminous IIn SNe, showing that it is a luminous (M_I ~ -20.5) event. Its host galaxy, UGC 5189, has a low gas-phase oxygen abundance (12 + log(O/H) = 8.2), which reinforces the emerging trend that over-luminous core-collapse supernovae are found in the low-metallicity tail of the galaxy distribution, similar to the known trend for the hosts of long GRBs. We compile oxygen abundances from the literature and from our own observations of UGC 5189, and we present an unpublished spectrum of the luminous type Ic SN 2010gx that we use to estimate its host metallicity. We discuss these in the context of host metallicity trends for different classes of core-collapse objects. The earliest generations of stars are known to be enhanced in [O/Fe] relative to the Solar mixture; it is therefore likely that the stellar progenitors of these overluminous supernovae are even more iron-poor than they are oxygen-poor. A number of mechanisms and massive star progenitor systems have been proposed to explain the most luminous core-collapse supernovae; any successful theory will need to include the emerging trend that points towards low-metallicity for the massive progenitor stars. This trend for very luminous supernovae to strongly prefer low-metallicity galaxies should be taken into account when considering various aspects of the evolution of the metal-poor early universe. (abridged)Comment: 27 pages, 7 figures, 2 tables. Accepted for publication in Ap

    The Impact of Reliable Symmetries on Pipelined Cryptoanalysis

    Full text link
    Fiber-optic cables must work. In our research, authors disconfirm the synthesis of kernels. We explore new “fuzzy” technology, which we call Hug

    SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova

    Full text link
    HET optical spectroscopy and unfiltered ROTSE-III photometry spanning the first 11 months since explosion of the Type II-P SN 2006bp are presented. Flux limits from the days before discovery combined with the initial rapid brightening suggest the supernova was first detected just hours after shock breakout. Optical spectra obtained about 2 days after breakout exhibit narrow emission lines corresponding to HeII 4200, HeII 4686, and CIV 5805 in the rest frame, and these features persist in a second observation obtained 5 hours later; however, these emission lines are not detected the following night nor in subsequent observations. We suggest that these lines emanate from material close to the explosion site, possibly in the outer layers of the progenitor that have been ionized by the high energy photons released at shock breakout. A P-Cygni profile is observed around 4450 A in the +2 and +3 day spectra. Previous studies have attributed this feature to high velocity H-beta, but we discuss the possibility that this profile is instead due to HeII 4687. Further HET observations (14 nights in total) covering the spectral evolution across the photometric plateau up to 73 days after breakout and during the nebular phase around day +340 are presented, and expansion velocities are derived for key features. The measured decay slope for the unfiltered light curve is 0.0073 +/- 0.0004 mag/day between days +121 and +335, which is significantly slower than the decay of rate 56Co. We combine our HET measurements with published X-ray, UV, and optical data to obtain a quasi-bolometric light curve through day +60. We see a slow cooling over the first 25 days, but no sign of an early sharp peak; any such feature from the shock breakout must have lasted less than ~1 day.[ABRIDGED]Comment: ApJ accepted, 43 page

    The Exceptionally Luminous Type Ia Supernova 2007If

    Get PDF
    SN 2007if was the third over-luminous Type Ia supernova (SN Ia) detected after 2003fg and 2006gz. We present the photometric and spectroscopic observations of the SN and its host by ROTSE-III, HET, and Keck. From the H a line identified in the host spectra, we determine a redshift of 0.0736. At this distance, the SN reached an absolute magnitude of -20.4, brighter than any other SNe Ia ever observed. If the source of luminosity is radioactive decay, a large amount of radioactive nickel (similar to 1.5 M(circle dot)) is required to power the peak luminosity, more than can be produced realistically in a Chandrasekhar mass progenitor. Low expansion velocity, similar to that of 2003fg, is also measured around the maximum light. The observations may suggest that SN 2007if was from a massive white dwarf progenitor, plausibly exploding with mass well beyond 1.4 M(circle dot). Alternatively, we investigate circumstellar interaction that may contribute to the excess luminosity.NASA NNX-08AN25G, NNX-08AV63GNSF AST-0707769, PHY-0801007Australian Research CouncilUniversity of New South WalesUniversity of TexasUniversity of MichiganAstronom

    Discovery of the Ultra-Bright Type II-L Supernova 2008es

    Get PDF
    We report the discovery by the Robotic Optical Transient Experiment (ROTSE-IIIb) telescope of SN 2008es, an overluminous supernova (SN) at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23+/-1 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric, broad H\alpha emission line profile with broad P Cygni H\beta and Na I \lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is greater than 10 times more luminous. The host galaxy is undetected in pre-supernova Sloan Digital Sky Survey images, and similar to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. Swift Ultraviolet/Optical Telescope observations in combination with Palomar photometry measure the SED of the SN from 200 to 800 nm to be a blackbody that cools from a temperature of 14,000 K at the time of the optical peak to 6400 K 65 days later. The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000 km/s). The bolometric luminosity at the optical peak is 2.8 x 10^44 erg/s, with a total energy radiated over the next 65 days of 5.6 x 10^50 erg. We favor a model in which the exceptional peak luminosity is a consequence of the core-collapse explosion of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind with a density close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-Ray Telescope. (Abridged).Comment: Accepted to ApJ, 14 pages, 7 figures, 3 tables, emulateapj, corrections from proofs adde

    Far-Ultraviolet to Near-Infrared Spectroscopy of A Nearby Hydrogen Poor Superluminous Supernova Gaia16apd

    Get PDF
    We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swift UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.Comment: 19 pages. Match with the version accepted in Ap
    corecore