39 research outputs found

    Potentialities of LL37 for Wound Healing Applications: Study of Its Activity in Synergy with Biodegradable Composites Made of PVA and CA

    Get PDF
    Wound healing is a dynamic and complex process that results from the interaction between cytokines, growth factors, blood components and the extracellular matrix. Conventional dressings made of natural or synthetic materials have only the ability to manage the wound and protect it from repeated trauma. With the advancement of technology, wound dressings have evolved and are now capable of intervening in the healing process by targeting specific features of the wound, aside from protecting the wounded site. In this work, bioactive dressings capable of promoting healing and fighting infection in chronic wounds were explored. Various antimicrobial biomolecules were examined in light of their pathogen fighting skills and immunoregulatory potentialities. Dressing production processes were also investigated. Biodegradable composite dressings made of poly(vinyl alcohol), polycaprolactone, chitosan and cellulose blends were our main focus. The goal was to evaluate the synergistic effect of biomolecules and biodegradable polymeric dressings, considering the local and systemic treatment demands of chronic wounds.Portuguese Foundation for Science and Technology (FCT), FEDER funds by means of Competitive Factors Operational Program (POCI) for funding the projects POCI-01-0145-FEDER-028074 and UID/CTM/00264/201

    Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Get PDF
    Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA
    corecore