2,699 research outputs found

    Min Max Generalization for Two-stage Deterministic Batch Mode Reinforcement Learning: Relaxation Schemes

    Full text link
    We study the minmax optimization problem introduced in [22] for computing policies for batch mode reinforcement learning in a deterministic setting. First, we show that this problem is NP-hard. In the two-stage case, we provide two relaxation schemes. The first relaxation scheme works by dropping some constraints in order to obtain a problem that is solvable in polynomial time. The second relaxation scheme, based on a Lagrangian relaxation where all constraints are dualized, leads to a conic quadratic programming problem. We also theoretically prove and empirically illustrate that both relaxation schemes provide better results than those given in [22]

    The Contribution of Electron Paramagnetic Resonance to Melanoma Research

    Get PDF
    The incidence of malignant melanoma, the most dangerous form of skin cancer, is rising each year. However, some aspects of the tumor initiation and development are still unclear, and the current method of diagnosis, based on the visual aspect of the tumor, shows limitations. For these reasons, developments of new techniques are ongoing to improve basic knowledge on the disease and diagnosis of tumors in individual patients. This paper shows how electron paramagnetic resonance (EPR), a method able to detect free radicals trapped in melanin pigments, has recently brought its unique value to this specific field. The general principles of the method and the convenience of melanin as an endogenous substrate for EPR measurements are explained. Then, the way by which EPR has recently helped to assess the contribution of ultraviolet rays (UVA and UVB) to the initiation of melanoma is described. Finally, we describe the improvements of EPR spectrometry and imaging in the detection and mapping of melanin pigments inside ex vivo and in vivo melanomas. We discuss how these advances might improve the diagnosis of this skin cancer and point out the present capabilities and limitations of the method

    The effect of Time Scales in Photosynthesis on microalgae Productivity

    Get PDF
    International audienceMicroalgae are often seen as a potential biofuel producer. In order to predict achievable productivities in the so called raceway culturing system, the dy- namics of photosynthesis has to be taken into account. In particular, the dynami- cal effect of inhibition by an excess of light (photoinhibition) must be represented. We propose a model considering both photosynthesis and growth dynamics. This model involves three different time scales. We study the response of this model to uctuating light with different frequencies by slow/fast approximations. Therefore, we identify three different regimes for which a simplified expression for the model can be derived. These expressions give a hint on productivity improvement which can be expected by stimulating photosynthesis with a faster hydrodynamics

    Dirac fermion reflector by ballistic graphene sawtooth-shaped npn junctions

    Full text link
    We have realized a Dirac fermion reflector in graphene by controlling the ballistic carrier trajectory in a sawtooth-shaped npn junction. When the carrier density in the inner p-region is much larger than that in the outer n-regions, the first straight np interface works as a collimator and the collimated ballistic carriers can be totally reflected at the second zigzag pn interface. We observed clear resistance enhancement around the np+n regime, which is in good agreement with the numerical simulation. The tunable reflectance of ballistic carriers could be an elementary and important step for realizing ultrahigh-mobility graphene field effect transistors utilizing Dirac fermion optics in the near future

    Photoionization modeling of the Galactic planetary nebulae Abell 39 and NGC 7027

    Full text link
    We estimate distances to the spherical planetary nebula Abell 39 and the bipolar planetary nebula NGC 7027 by interpolating from a wide grid of photoionization models using the 3-D code, MOCASSIN. We find preliminary distances of 1.5 kpc and 0.9 kpc respectively, with uncertainties of about 30%.Comment: 2 pages, 1 figure, presented at the IAU Symposium 283 "Planetary Nebulae: an Eye to the Future", Puerto de la Cruz, Tenerife, Spain, 201

    Second Order Perturbation Theory for Improved Gluon and Staggered Quark Actions

    Get PDF
    We present the results of our perturbative calculations of the static quark potential, small Wilson loops, the static quark self energy, and the mean link in Landau gauge. These calculations are done for the one loop Symanzik improved gluon action, and the improved staggered quark action.Comment: 3 pages, LaTeX, Lattice2001(improvement

    Klein-tunneling transistor with ballistic graphene

    Full text link
    Today the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistor in the ballistic regime gives access to the Klein tunneling physics and allows the realization of devices exploiting the optics-like behavior of Dirac Fermions (DF) as in the Vesalego lens or the Fabry P\'erot cavity. Here we propose a Klein tunneling transistor based on geometrical optics of DF. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of the transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using Non Equilibrium Green's Function(NEGF) simulation.Comment: 4 pages, 5 figure
    • …
    corecore