99 research outputs found

    Characterization of anti-crotalic antibodies

    Get PDF
    AbstractCrotalus durissus terrificus, C. d. collilineatus, C. d. cascavella and C. d. marajoensis are responsible minor but severe snake bites in Brazil. The venoms of these snakes share the presence of crotoxin, a neurotoxin comprising of two associated components, crotapotin and phospholipase A2 (PLA2). Treatment of the victims with specific antiserum is the unique effective therapeutic measure. The ability of anti-Crotalus antisera produced by the routine using crude venom to immunize horses or purified crotoxin and PLA2 as individual immunogens was compared. Antisera obtained from horses immunized with C. durissus terrificus crude venom were able to recognize and neutralize not only the toxins presents in C. durissus terrificus, but also the ones present in the venoms from C. d. collilineatus, C. d. cascavella and C. d. marajoensis. Antisera from horses immunized with individual crotoxin or PLA2, although in lesser titers, were also able of recognizing the toxins in all four Crotalus species and neutralize the lethality of the C. d. terrificus venom

    Structuring functional groups of aquatic insects along the resistance/resilience axis when facing water flow changes

    Get PDF
    Understanding how differences in intensity and frequency of hydrological disturbances affect the resistance and resilience of aquatic organisms is key to manage aquatic systems in a fast-changing world. Some aquatic insects have strategies that improve the permanence (resistance), while others use strategies that favor recolonization (resilience). Therefore, we carried out a manipulative experiment to understand the influence of functional characteristics of aquatic insects in their permanence and recolonization against hydrological disturbances in streams in the biodiversity hotspot of the Cerrado of Brazil. We placed 200 artificial substrates in five streams and submitted them to changing water flow regimes that differed both in frequency and intensity, and we observed the response of the aquatic community for 39 days. We used a hierarchical Bayesian approach to estimate the probabilities of permanence and recolonization of each life strategy group (nine groups). We observed that the most intense changes in the water flow tended to affect the permanence of almost all groups, but the intensity of this effect reduced over time. On the other hand, less frequent disturbances, regardless of intensity, tended to reduce the permanence of most groups of aquatic insects over time. The different effects of disturbance intensity may have been related to a greater recolonization capacity of some groups. The results we present are worrisome in a scenario of reduced riparian vegetation around streams and with the expectation of precipitation becoming more concentrated in shorter periods of time due to climate change in the Cerrado hotspot, reducing the occurrence of many groups of aquatic insects in their habitat, particularly those with traits associated with resistance against hydrological disturbance

    Genome-wide identification, characterization and expression profiling of the ubiquitin-proteasome genes in biomphalaria glabrata

    Get PDF
    Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. The aims of this work were to identify and characterize the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterized these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organized distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analyzed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis114CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ479890/2013-
    • 

    corecore