61 research outputs found

    Phylogenetic relationships within Chrysogorgia (Alcyonacea: Octocorallia), a morphologically diverse genus of octocoral, revealed using a target enrichment approach

    Get PDF
    The octocoral genus Chrysogorgia (Duchassaing and Michelotti, 1864) contains 81 nominal species that are ecologically important components of benthic communities. Taxonomic examination of a large set of samples revealed many provisional new species, exhibiting a wide range of morphological variation. We established nine, distinct morphological groups of Chrysogorgia s.l. that were hypothesized to represent distinct genera. Here, we applied a recently developed universal target enrichment bait method for octocoral exons and ultraconserved elements (UCEs) on 96 specimens varying in morphology, collection ages and DNA quality and quantity to determine whether there was genetic support for these morphologically defined groups. Following Illumina sequencing and SPAdes assembly we recovered 1,682 of 1,700 targeted exon loci and 1,333 of 1,340 targeted UCE loci. Locus recovery per sample was highly variable and significantly correlated with time since specimen collection (2-60 years) and DNA quantity and quality. Phylogenetically informative sites in UCE and exon loci were ∼35% for 50% and 75% taxon-occupancy matrices. Maximum likelihood analyses recovered highly resolved trees with topologies supporting the recognition of 11 candidate genera, corresponding with morphological groups assigned a priori, nine of which are novel. Our results also demonstrate that this target-enrichment approach can be successfully applied to degraded museum specimens of up to 60 years old. This study shows that an integrative approach consisting of molecular and morphological methods will be essential to a proper revision of Chrysogorgia taxonomy and to understand regional diversity of these ecologically important corals

    Moving conferences online: lessons learned from an international virtual meeting

    Get PDF
    We consider the opportunities and challenges associated with organizing a conference online, using a case study of a medium-sized (approx. 400 participants) international conference held virtually in August 2020. In addition, we present quantifiable evidence of the participants' experience using the results from an online post-conference questionnaire. Although the virtual meeting was not able to replicate the in-person experience in some aspects (e.g. less engagement between participants) the overwhelming majority of respondents found the meeting an enjoyable experience and would join similar events again. Notably, there was a strong desire for future in-person meetings to have at least some online component. Online attendance by lower-income researchers was higher compared with a past, similar-themed in-person meeting held in a high-income nation, but comparable to one held in an upper-middle-income nation. This indicates that online conferences are not a panacea for diversity and inclusivity, and that holding in-person meetings in developing economies can be at least as effective. Given that it is now relatively easy to stream contents of meetings online using low-cost methods, there are clear benefits in making all presented content accessible online, as well as organizing online networking events for those unable to attend in person

    Species replacement dominates megabenthos beta diversity in a remote seamount setting

    Get PDF
    Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Full text link
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses

    Recent advances in amyotrophic lateral sclerosis

    Get PDF

    Synthesis and Preliminary Evaluation in Tumor Bearing Mice of New 18F‑Labeled Arylsulfone Matrix Metalloproteinase Inhibitors as Tracers for Positron Emission Tomography

    No full text
    New fluorinated, arylsulfone-based matrix metalloproteinase (MMP) inhibitors containing carboxylate as the zinc binding group were synthesized as radiotracers for positron emission tomography. Inhibitors were characterized by Ki for MMP-2 in the nanomolar range and by a fair selectivity for MMP- 2/9/12/13 over MMP-1/3/14. Two of these compounds were obtained in the 18F-radiolabeled form, with radiochemical purity and yield suitable for preliminary studies in mice xenografted with a human U-87 MG glioblastoma. Target density in xenografts was assessed by Western blot, yielding Bmax/Kd = 14. The biodistribution of the tracer was dominated by liver uptake and hepatobiliary clearance. Tumor uptake of 18F-labeled MMP inhibitors was about 30% that of [18F]fluorodeoxyglucose. Accumulation of radioactivity within the tumor periphery colocalized with MMP-2 activity (evaluated by in situ zimography). However, specific tumor uptake accounted for only 18% of total uptake. The aspecific uptake was ascribed to the high binding affinity between the radiotracer and serum albumin
    corecore