159 research outputs found
Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements
In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontalâbasal gangliaâthalamic network, including the pre-supplementary motor area and the inferior frontal gyrus (IFG). These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e., premotor (PMA) and primary motor (M1) cortices. Electroencephalographic (EEG) studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs) when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA, and Brodmann's area (BA) 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop (US) trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times (RTs). These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontalâbasal gangliaâthalamic network
Pharmacological control of the mevalonate pathway: Effect on arterial smooth muscle cell proliferation
The mevalonate (MVB) pathway is involved in cell proliferation. We investigated drugs acting at different enzymatic steps on rat aorta smooth muscle cell (SMC) proliferation. Competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (0.1-10 mu M) dose-dependently decreased (up to 90%) SMC proliferation. This effect was prevented by 100 mu M MVA, 10 mu M all-trans famesol (F-OH) and 5 mu M all-trans geranylgeraniol (GG-OH), precursors of protein prenyl groups, but not by 2-cis GG-OH, precursor of dolichols, squalene and ubiquinone. The same inhibitory effect was obtained with 6-fluoromevalonate (1-50 mu M), an inhibitor of MVA-pyrophosphate decarboxylase. Partial recovery of cell proliferation was possible by all-trans F-OH and all-trans GG-OH, but not MVA. Squalestatin 1 (1-25 mu M), a potent squalene synthase inhibitor, blocked cholesterol synthesis and slightly inhibited (21% decrease) SMC proliferation only at the highest tested concentration. NB-598 (1-10 mu M), a potent squalene epoxidase inhibitor, blocked cholesterol synthesis without affecting SMC proliferation. Finally, the benzodiazepine peptidomimetic BZA-5B (10-100 mu M), a specific inhibitor of protein famesyltransferase, time- and dose-dependently decreased SMC proliferation (up to 62%) after 9 days. This effect of BZA-5B was prevented by MVA and all-trans GG-OH, but not by all-trans F-OH. SMC proliferation was not affected by the closely related compound BZA-7B, which does not inhibit protein farnesyltransferase. Altogether, these findings focus the role of the MVA pathway in cell proliferation and call attention to the involvement of specific isoprenoid metabolites probably through farnesylated and geranylgeranylated proteins, in the control of this cellular event
RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity
Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells
Acute aquatic toxicity to zebrafish and bioaccumulation in marine mussels of antimony tin oxide nanoparticles
Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 Ă 106 ± 9.05 Ă 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.Fundação para a CiĂȘncia e Tecnologia | Ref. 2020.04021.CEECIN
Adjunctive Brivaracetam in Focal Epilepsy: Real-World Evidence from the BRIVAracetam add-on First Italian netwoRk STudy (BRIVAFIRST)
Background: In randomized controlled trials, add-on brivaracetam (BRV) reduced seizure frequency in patients with drug-resistant focal epilepsy. Studies performed in a naturalistic setting are a useful complement to characterize the drug profile. Objective: This multicentre study assessed the effectiveness and tolerability of adjunctive BRV in a large population of patients with focal epilepsy in the context of real-world clinical practice. Methods: The BRIVAFIRST (BRIVAracetam add-on First Italian netwoRk STudy) was a retrospective, multicentre study including adult patients prescribed adjunctive BRV. Patients with focal epilepsy and 12-month follow-up were considered. Main outcomes included the rates of seizure\u2010freedom, seizure response ( 65 50% reduction in baseline seizure frequency), and treatment discontinuation. The incidence of adverse events (AEs) was also considered. Analyses by levetiracetam (LEV) status and concomitant use of strong enzyme-inducing antiseizure medications (EiASMs) and sodium channel blockers (SCBs) were performed. Results: A total of 1029 patients with a median age of 45 years (33\u201356) was included. At 12 months, 169 (16.4%) patients were seizure-free and 383 (37.2%) were seizure responders. The rate of seizure freedom was 22.3% in LEV-naive patients, 7.1% in patients with prior LEV use and discontinuation due to insufficient efficacy, and 31.2% in patients with prior LEV use and discontinuation due to AEs (p < 0.001); the corresponding values for 65 50% seizure frequency reduction were 47.9%, 29.7%, and 42.8% (p < 0.001). There were no statistically significant differences in seizure freedom and seizure response rates by use of strong EiASMs. The rates of seizure freedom (20.0% vs. 16.6%; p = 0.341) and seizure response (39.7% vs. 26.9%; p = 0.006) were higher in patients receiving SCBs than those not receiving SCBs; 265 (25.8%) patients discontinued BRV. AEs were reported by 30.1% of patients, and were less common in patients treated with BRV and concomitant SCBs than those not treated with SCBs (28.9% vs. 39.8%; p = 0.017). Conclusion: The BRIVAFIRST provided real-world evidence on the effectiveness of BRV in patients with focal epilepsy irrespective of LEV history and concomitant ASMs, and suggested favourable therapeutic combinations
Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis
During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP. Such caspase independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signaling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signaling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP. In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP. Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death
Adjunctive Brivaracetam in Focal Epilepsy: Real-World Evidence from the BRIVAracetam add-on First Italian netwoRk STudy (BRIVAFIRST)
Background: In randomized controlled trials, add-on brivaracetam (BRV) reduced seizure frequency in patients with drug-resistant focal epilepsy. Studies performed in a naturalistic setting are a useful complement to characterize the drug profile. Objective: This multicentre study assessed the effectiveness and tolerability of adjunctive BRV in a large population of patients with focal epilepsy in the context of real-world clinical practice. Methods: The BRIVAFIRST (BRIVAracetam add-on First Italian netwoRk STudy) was a retrospective, multicentre study including adult patients prescribed adjunctive BRV. Patients with focal epilepsy and 12-month follow-up were considered. Main outcomes included the rates of seizureâfreedom, seizure response (â„ 50% reduction in baseline seizure frequency), and treatment discontinuation. The incidence of adverse events (AEs) was also considered. Analyses by levetiracetam (LEV) status and concomitant use of strong enzyme-inducing antiseizure medications (EiASMs) and sodium channel blockers (SCBs) were performed. Results: A total of 1029 patients with a median age of 45 years (33â56) was included. At 12 months, 169 (16.4%) patients were seizure-free and 383 (37.2%) were seizure responders. The rate of seizure freedom was 22.3% in LEV-naive patients, 7.1% in patients with prior LEV use and discontinuation due to insufficient efficacy, and 31.2% in patients with prior LEV use and discontinuation due to AEs (p < 0.001); the corresponding values for â„ 50% seizure frequency reduction were 47.9%, 29.7%, and 42.8% (p < 0.001). There were no statistically significant differences in seizure freedom and seizure response rates by use of strong EiASMs. The rates of seizure freedom (20.0% vs. 16.6%; p = 0.341) and seizure response (39.7% vs. 26.9%; p = 0.006) were higher in patients receiving SCBs than those not receiving SCBs; 265 (25.8%) patients discontinued BRV. AEs were reported by 30.1% of patients, and were less common in patients treated with BRV and concomitant SCBs than those not treated with SCBs (28.9% vs. 39.8%; p = 0.017). Conclusion: The BRIVAFIRST provided real-world evidence on the effectiveness of BRV in patients with focal epilepsy irrespective of LEV history and concomitant ASMs, and suggested favourable therapeutic combinations
Sustained seizure freedom with adjunctive brivaracetam in patients with focal onset seizures
The maintenance of seizure control over time is a clinical priority in patients with epilepsy. The aim of this study was to assess the sustained seizure frequency reduction with adjunctive brivaracetam (BRV) in real-world practice. Patients with focal epilepsy prescribed add-on BRV were identified. Study outcomes included sustained seizure freedom and sustained seizure response, defined as a 100% and a â„50% reduction in baseline seizure frequency that continued without interruption and without BRV withdrawal through the 12-month follow-up. Nine hundred ninety-four patients with a median age of 45 (interquartile range = 32â56) years were included. During the 1-year study period, sustained seizure freedom was achieved by 142 (14.3%) patients, of whom 72 (50.7%) were seizure-free from Day 1 of BRV treatment. Sustained seizure freedom was maintained for â„6, â„9, and 12 months by 14.3%, 11.9%, and 7.2% of patients from the study cohort. Sustained seizure response was reached by 383 (38.5%) patients; 236 of 383 (61.6%) achieved sustained â„50% reduction in seizure frequency by Day 1, 94 of 383 (24.5%) by Month 4, and 53 of 383 (13.8%) by Month 7 up to Month 12. Adjunctive BRV was associated with sustained seizure frequency reduction from the first day of treatment in a subset of patients with uncontrolled focal epilepsy
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
- âŠ