36 research outputs found
The Lung Screen Uptake Trial (LSUT): protocol for a randomised controlled demonstration lung cancer screening pilot testing a targeted invitation strategy for high risk and ‘hard-to-reach’ patients
Background Participation in low-dose CT (LDCT) lung cancer screening offered in the trial context has been poor, especially among smokers from socioeconomically deprived backgrounds; a group for whom the risk-benefit ratio is improved due to their high risk of lung cancer. Attracting high risk participants is essential to the success and equity of any future screening programme. This study will investigate whether the observed low and biased uptake of screening can be improved using a targeted invitation strategy. Methods/design A randomised controlled trial design will be used to test whether targeted invitation materials are effective at improving engagement with an offer of lung cancer screening for high risk candidates. Two thousand patients aged 60–75 and recorded as a smoker within the last five years by their GP, will be identified from primary care records and individually randomised to receive either intervention invitation materials (which take a targeted, stepped and low burden approach to information provision prior to the appointment) or control invitation materials. The primary outcome is uptake of a nurse-led ‘lung health check’ hospital appointment, during which patients will be offered a spirometry test, an exhaled carbon monoxide (CO) reading, and an LDCT if eligible. Initial data on demographics (i.e. age, sex, ethnicity, deprivation score) and smoking status will be collected in primary care and analysed to explore differences between attenders and non-attenders with respect to invitation group. Those who attend the lung health check will have further data on smoking collected during their appointment (including pack-year history, nicotine dependence and confidence to quit). Secondary outcomes will include willingness to be screened, uptake of LDCT and measures of informed decision-making to ensure the latter is not compromised by either invitation strategy. Discussion If effective at improving informed uptake of screening and reducing bias in participation, this invitation strategy could be adopted by local screening pilots or a national programme. Trial registration This study was registered with the ISRCTN (International Standard Registered Clinical/soCial sTudy Number : ISRCTN21774741) on the 23rd September 2015 and the NIH ClinicalTrials.gov database (NCT0255810) on the 22nd September 2015
Recommended from our members
Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes
Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom
Abstract: Background: The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK. Methods: We analysed current and former smokers aged 40–80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC). Results: Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81–0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79–0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79–0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14–1.27) to 2.16 for LLPv2 (95% CI = 2.05–2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%). Conclusion: In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries
USPSTF2013 versus PLCOm2012 lung cancer screening eligibility criteria (International Lung Screening Trial): interim analysis of a prospective cohort study.
BACKGROUND: Lung cancer is a major health problem. CT lung screening can reduce lung cancer mortality through early diagnosis by at least 20%. Screening high-risk individuals is most effective. Retrospective analyses suggest that identifying individuals for screening by accurate prediction models is more efficient than using categorical age-smoking criteria, such as the US Preventive Services Task Force (USPSTF) criteria. This study prospectively compared the effectiveness of the USPSTF2013 and PLCOm2012 model eligibility criteria. METHODS: In this prospective cohort study, participants from the International Lung Screening Trial (ILST), aged 55-80 years, who were current or former smokers (ie, had ≥30 pack-years smoking history or ≤15 quit-years since last permanently quitting), and who met USPSTF2013 criteria or a PLCOm2012 risk threshold of at least 1·51% within 6 years of screening, were recruited from nine screening sites in Canada, Australia, Hong Kong, and the UK. After enrolment, patients were assessed with the USPSTF2013 criteria and the PLCOm2012 risk model with a threshold of at least 1·70% at 6 years. Data were collected locally and centralised. Main outcomes were the comparison of lung cancer detection rates and cumulative life expectancies in patients with lung cancer between USPSTF2013 criteria and the PLCOm2012 model. In this Article, we present data from an interim analysis. To estimate the incidence of lung cancers in individuals who were USPSTF2013-negative and had PLCOm2012 of less than 1·51% at 6 years, ever-smokers in the Prostate Lung Colorectal and Ovarian Cancer Screening Trial (PLCO) who met these criteria and their lung cancer incidence were applied to the ILST sample size for the mean follow-up occurring in the ILST. This trial is registered at ClinicalTrials.gov, NCT02871856. Study enrolment is almost complete. FINDINGS: Between June 17, 2015, and Dec 29, 2020, 5819 participants from the International Lung Screening Trial (ILST) were enrolled on the basis of meeting USPSTF2013 criteria or the PLCOm2012 risk threshold of at least 1·51% at 6 years. The same number of individuals was selected for the PLCOm2012 model as for the USPSTF2013 criteria (4540 [78%] of 5819). After a mean follow-up of 2·3 years (SD 1·0), 135 lung cancers occurred in 4540 USPSTF2013-positive participants and 162 in 4540 participants included in the PLCOm2012 of at least 1·70% at 6 years group (cancer sensitivity difference 15·8%, 95% CI 10·7-22·1%; absolute odds ratio 4·00, 95% CI 1·89-9·44; p<0·0001). Compared to USPSTF2013-positive individuals, PLCOm2012-selected participants were older (mean age 65·7 years [SD 5·9] vs 63·3 years [5·7]; p<0·0001), had more comorbidities (median 2 [IQR 1-3] vs 1 [1-2]; p<0·0001), and shorter life expectancy (13·9 years [95% CI 12·8-14·9] vs 14·8 [13·6-16·0] years). Model-based difference in cumulative life expectancies for those diagnosed with lung cancer were higher in those who had PLCOm2012 risk of at least 1·70% at 6 years than individuals who were USPSTF2013-positive (2248·6 years [95% CI 2089·6-2425·9] vs 2000·7 years [1841·2-2160·3]; difference 247·9 years, p=0·015). INTERPRETATION: PLCOm2012 appears to be more efficient than the USPSTF2013 criteria for selecting individuals to enrol into lung cancer screening programmes and should be used for identifying high-risk individuals who benefit from the inclusion in these programmes. FUNDING: Terry Fox Research Institute, The UBC-VGH Hospital Foundation and the BC Cancer Foundation, the Alberta Cancer Foundation, the Australian National Health and Medical Research Council, Cancer Research UK and a consortium of funders, and the Roy Castle Lung Cancer Foundation for the UK Lung Screen Uptake Trial