371 research outputs found
Clustering and descendants of MUSYC galaxies at z<1.5
We measure the evolution of galaxy clustering out to a redshift of z~1.5
using data from two MUSYC fields, the Extended Hubble Deep Field South (EHDF-S)
and the Extended Chandra Deep Field South (ECDF-S). We use photometric redshift
information to calculate the projected-angular correlation function,
omega(sigma), from which we infer the projected correlation function Xi(sigma).
We demonstrate that this technique delivers accurate measurements of clustering
even when large redshift measurement errors affect the data. To this aim we use
two mock MUSYC fields extracted from a LambdaCDM simulation populated with
GALFORM semi-analytic galaxies which allow us to assess the degree of accuracy
of our estimates of Xi(sigma) and to identify and correct for systematic
effects in our measurements. We study the evolution of clustering for volume
limited subsamples of galaxies selected using their photometric redshifts and
rest-frame r-band absolute magnitudes. We find that the real-space correlation
length r_0 of bright galaxies, M_r<-21 (rest-frame) can be accurately recovered
out to z~1.5, particularly for ECDF-S given its near-infrared photometric
coverage. There is mild evidence for a luminosity dependent clustering in both
fields at the low redshift samples (up to =0.57), where the correlation
length is higher for brighter galaxies by up to 1Mpc/h between median
rest-frame r-band absolute magnitudes of -18 to -21.5. As a result of the
photometric redshift measurement, each galaxy is assigned a best-fit template;
we restrict to E and E+20%Sbc types to construct subsamples of early type
galaxies (ETGs). Our ETG samples show a strong increase in r_0 as the redshift
increases, making it unlikely (95% level) that ETGs at median redshift
z_med=1.15 are the direct progenitors of ETGs at z_med=0.37 with equivalent
passively evolved luminosities. (ABRIDGED)Comment: 16 pages, 12 figures, 2 tables, accepted for publication in MNRA
The Herschel Stripe 82 Survey (HerS): maps and early catalog
We present the first set of maps and band-merged catalog from the Herschel Stripe 82 Survey (HerS). Observations at 250, 350, and 500μm were taken with the Spectral and Photometric Imaging Receiver instrument aboard the Herschel Space Observatory. HerS covers 79deg 2 along the SDSS Stripe 82 to an average depth of 13.0, 12.9, and 14.8mJybeam −1 (including confusion) at 250, 350, and 500μm, respectively. HerS was designed to measure correlations with external tracers of the dark matter density field—either point-like (i.e., galaxies selected from radio to X-ray) or extended (i.e., clusters and gravitational lensing)—in order to measure the bias and redshift distribution of intensities of infrared-emitting dusty star-forming galaxies and active galactic nuclei. By locating HerS in Stripe 82, we maximize the overlap with available and upcoming cosmological surveys. The band-merged catalog contains 3.3 × 10 4 sources detected at a significance of ?3σ (including confusion noise). The maps and catalog are available at http://www.astro.caltech.edu/hers/
Gravitational Lensing
Gravitational lensing has developed into one of the most powerful tools for
the analysis of the dark universe. This review summarises the theory of
gravitational lensing, its main current applications and representative results
achieved so far. It has two parts. In the first, starting from the equation of
geodesic deviation, the equations of thin and extended gravitational lensing
are derived. In the second, gravitational lensing by stars and planets,
galaxies, galaxy clusters and large-scale structures is discussed and
summarised.Comment: Invited review article to appear in Classical and Quantum Gravity, 85
pages, 15 figure
A galaxy populations study of a radio-selected protocluster at z~3.1
We present a population study of several types of galaxies within the
protocluster surrounding the radio galaxy MRC0316-257 at z~3.1. In addition to
the known population of Ly_alpha emitters (LAEs) and [OIII] emitters, we use
colour selection techniques to identify protocluster candidates that are Lyman
break galaxies (LBG) and Balmer break galaxies (BBGs). The radio galaxy field
contains an excess of LBG candidates, with a surface density 1.6\pm0.3 times
larger than found for comparable blank fields. This surface overdensity
corresponds to an LBG volume overdensity of ~8\pm4. The BBG photometric
redshift distribution peaks at the protocluster's redshift, but we detect no
significant surface overdensity of BBG. This is not surprising because a volume
overdensity similar to the LBGs would have resulted in a surface density of
~1.2 that found in the blank field. This could not have been detected in our
sample. Masses and star formation rates of the candidate protocluster galaxies
are determined using SED fitting. These properties are not significantly
different from those of field galaxies. The galaxies with the highest masses
and star formation rates are located near the radio galaxy, indicating that the
protocluster environment influences galaxy evolution at z~3. We conclude that
the protocluster around MRC0316-257 is still in the early stages of formation.Comment: 19 pages, 20 figures, accepted for publication in MNRA
ZFOURGE/CANDELS: On the Evolution of \u3cem\u3eM\u3c/em\u3e* Galaxy Progenitors from \u3cem\u3ez\u3c/em\u3e=3 to 0.5*
Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ☉ (defined here to be MW-mass) and 1011 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency
CANDELS Observations of the Structural Properties and Evolution of Galaxies in a Cluster at z=1.62
We discuss the structural and morphological properties of galaxies in a
z=1.62 proto-cluster using near-IR imaging data from Hubble Space Telescope
Wide Field Camera 3 data of the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (CANDELS). The cluster galaxies exhibit a clear color-morphology
relation: galaxies with colors of quiescent stellar populations generally have
morphologies consistent with spheroids, and galaxies with colors consistent
with ongoing star formation have disk-like and irregular morphologies. The size
distribution of the quiescent cluster galaxies shows a deficit of compact (<
1kpc), massive galaxies compared to CANDELS field galaxies at z=1.6. As a
result the cluster quiescent galaxies have larger average effective sizes
compared to field galaxies at fixed mass at greater than 90% significance.
Combined with data from the literature, the size evolution of quiescent cluster
galaxies is relatively slow from z~1.6 to the present, growing as
(1+z)^(-0.6+/-0.1). If this result is generalizable, then it implies that
physical processes associated with the denser cluster region seems to have
caused accelerated size growth in quiescent galaxies prior to z=1.6 and slower
subsequent growth at z<1.6 compared to galaxies in the lower density field. The
quiescent cluster galaxies at z=1.6 have higher ellipticities compared to lower
redshift samples at fixed mass, and their surface-brightness profiles suggest
that they contain extended stellar disks. We argue the cluster galaxies require
dissipationless (i.e., gas-poor or "dry") mergers to reorganize the disk
material and to match the relations for ellipticity, stellar mass, size, and
color of early-type galaxies in z<1 clusters.Comment: Accepted for publication in ApJ. 14 pages in emulateapj format.
Replacement includes improvements from referee report, and updates and
additions to reference
Sustained seizure freedom with adjunctive brivaracetam in patients with focal onset seizures
The maintenance of seizure control over time is a clinical priority in patients with epilepsy. The aim of this study was to assess the sustained seizure frequency reduction with adjunctive brivaracetam (BRV) in real-world practice. Patients with focal epilepsy prescribed add-on BRV were identified. Study outcomes included sustained seizure freedom and sustained seizure response, defined as a 100% and a ≥50% reduction in baseline seizure frequency that continued without interruption and without BRV withdrawal through the 12-month follow-up. Nine hundred ninety-four patients with a median age of 45 (interquartile range = 32–56) years were included. During the 1-year study period, sustained seizure freedom was achieved by 142 (14.3%) patients, of whom 72 (50.7%) were seizure-free from Day 1 of BRV treatment. Sustained seizure freedom was maintained for ≥6, ≥9, and 12 months by 14.3%, 11.9%, and 7.2% of patients from the study cohort. Sustained seizure response was reached by 383 (38.5%) patients; 236 of 383 (61.6%) achieved sustained ≥50% reduction in seizure frequency by Day 1, 94 of 383 (24.5%) by Month 4, and 53 of 383 (13.8%) by Month 7 up to Month 12. Adjunctive BRV was associated with sustained seizure frequency reduction from the first day of treatment in a subset of patients with uncontrolled focal epilepsy
CANDELS multi-wavelength catalogs: source identification and photometry in the CANDELS COSMOS survey field
We present a multi-wavelength photometric catalog in the COSMOS field as part of the observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The catalog is based on Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) and Advanced Camera for Surveys observations of the COSMOS field (centered at R.A.: 10h00m28s, Decl.:+02h12m21s). The final catalog has 38671 sources with photometric data in 42 bands from UV to the infrared (~0.3-8 μm). This includes broadband photometry from HST, CFHT, Subaru, the Visible and Infrared Survey Telescope for Astronomy, and Spitzer Space Telescope in the visible, near-infrared, and infrared bands along with intermediate- and narrowband photometry from Subaru and medium-band data from Mayall NEWFIRM. Source detection was conducted in the WFC3 F160W band (at 1.6 μm) and photometry is generated using the Template FITting algorithm. We further present a catalog of the physical properties of sources as identified in the HST F160W band and measured from the multi-band photometry by fitting the observed spectral energy distributions of sources against templates
- …