23 research outputs found

    Gardenia Decoction Prevent Intestinal Mucosal Injury by Inhibiting Pro-inflammatory Cytokines and NF-κB Signaling

    Get PDF
    Gardenia jasminoides Ellis, which belongs to the Rubiaceae family, is a widely used traditional Chinese medicine. Although effect of Gardenia jasminoides Ellis has been widely reported, its anti-inflammatory role in intestinal mucosal injury induced by LPS remains unclear. In the present study, we investigated the effects of decoction extracted from Gardenia jasminoides on the morphology and intestinal antioxidant capacity of duodenum induced by LPS in mice. Further analysis was carried out in the expression of inflammatory and anti-inflammatory cytokines. Nuclear factor-kappa B (NF-κB) was determined by Western blot. Gardenia jasminoides water extract was qualitative analyzed by high-performance liquid chromatography coupled with electro spray ionization quadrupole time-of-flight mass spectrometry. The results showed that Gardenia decoction markedly inhibited the LPS-induced Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-8, and IL-1 production. It was also observed that Gardenia decoction attenuated duodenum histopathology changes in the mouse models. Furthermore, Gardenia decoction inhibited the expression of NF-κB in LPS stimulated mouse duodenum. These results suggest that Gardenia decoction exerts an anti-inflammatory and antioxidant property by up-regulating the activities of the total antioxidant capacity (T-AOC), the total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Gardenia decoction is highly effective in inhibiting intestinal mucosal damage and may be a promising potential therapeutic reagent for intestinal mucosal damage treatment

    Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation

    Get PDF
    Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2+/+ and Nrf2−/− mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2−/− mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2−/− mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2

    Exploring the Peer Effect of Physicians’ and Patients’ Participation Behavior: Evidence from Online Health Communities

    No full text
    Background: Little research has studied the peer effect of physicians and patients in online health communities (OHCs) simultaneously. The study investigates the impact of the focal physician’s peers (F-peers) on the focal physician (F-physician), and the impact of patients of the focal physician’s peers (F-P-patients) on the focal physician’s patients (F-patients). Moreover, based on brand extension and accessible–diagnosable theories, this study explores the moderating effects of the intensity of F-peers’ knowledge sharing behavior and department reputation. Methods: This study collects data of 3297 physicians and related patients from Haodf.com platform between January 2019 and December 2019. Both two-way fixed effect and panel negative binomial regression are adopted to quantify the effects. Results: Results show that the behavior of F-peers positively affects the behavior of the F-physician, while the behavior of F-P-patients positively affects the behavior of F-patients. Moreover, both the intensity of F-peers’ knowledge sharing behavior and department reputation have a compound moderating effect. Conclusions: This study contributes to the literature of peer effects by constructing the conceptual framework of different types of individual participation behaviors in OHCs. The findings offer practical guides for establishing an incentive mechanism and formulating peer incentives or competition strategies in OHCs

    Hepatotoxicity induced by intragastrically administrated with Gardenia decoction in mice

    No full text
    <p>The study was to investigate the potential hepatotoxicity of Gardenia decoction induced by intragastrically administrated mice. Mice were randomly divided into four groups. Intragastric administration of the respective treatments was provided continuously for seven days and the body weight was recorded everyday. The activity levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum were recorded. In addition, changes in liver morphology and organ coefficients were evaluated. Compared with the mice in the control group, GD increased the activities of ALT and AST in a dose-dependent manner (<i>P</i> < 0.05). However, there were no significant differences in the weight between the GD-treated groups and the control group (<i>P</i> > 0.05). The liver coefficient was significantly higher (<i>P</i> < 0.05) in the mice in the medium- and high-dose GD groups and there were significant pathological changes in the lives. In conclusion, the high-dose GD has the potential to induce hepatotoxicity in mice.</p

    Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens

    No full text
    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens’ intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens’ gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health

    Highly Chemiluminescent Magnetic Beads for Label-Free Sensing of 2,4,6-Trinitrotoluene

    No full text
    Until now, despite the great success acquired in scientific research and commercial applications, magnetic beads (MBs) have been used for nothing more than a carrier in most cases in bioassays. In this work, highly chemiluminescent magnetic beads containing <i>N</i>-(4-aminobutyl)-<i>N</i>-ethyl isoluminol (ABEI) and Co<sup>2+</sup> (Co<sup>2+</sup>/ABEI/MBs) were first synthesized via a facile strategy. ABEI and Co<sup>2+</sup> were grafted onto the surface of carboxylated MBs by virtue of a carboxyl group and electrostatic interaction. The as-prepared Co<sup>2+</sup>/ABEI/MBs exhibited good paramagnetic properties, satisfactory stability, and intense chemiluminescence (CL) emission when reacted with H<sub>2</sub>O<sub>2</sub>, which was more than 150 times that of ABEI functionalized MBs. Furthermore, it was found that 2,4,6-trinitrotoluene (TNT) aptamer could attach to the surface of Co<sup>2+</sup>/ABEI/MBs via electrostatic interaction and coordination interaction between TNT aptamer and Co<sup>2+</sup>, leading to a decrease in CL intensity due to the catalytic site Co<sup>2+</sup> being blocked by the aptamer. In the presence of TNT, TNT would bind strongly with TNT aptamer and detach from the surface of Co<sup>2+</sup>/ABEI/MBs, resulting in partial restoration of the CL signal. Accordingly, label-free aptasensor was developed for the determination of TNT in the range of 0.05–25 ng/mL with a detection limit of 17 pg/mL. This work demonstrates that Co<sup>2+</sup>/ABEI/MBs are easily connected with recognition biomolecules, which are not only magnetic carriers but also direct sensing interfaces with excellent CL activity. It provides a novel CL interface with a magnetic property which easily separates analytes from the sample matrix to construct label-free bioassays

    Recurrent de novo WFS1

    No full text
    Abstract Background Hereditary hearing loss (HL) is heterogeneous in terms of their phenotypic features, modes of inheritance, and causative gene mutations. The contribution of genetic variants to sporadic HL remains largely expanding. Either recessive or de novo dominant variants could result in an apparently sporadic occurrence of HL. In an attempt to find such variants we recruited 128 Chinese patients with sporadic nonsyndromic sensorineural HL (NSHL) and performed targeted deafness multigene sequencing in these unrelated trios‐families to elucidate the molecular basis. Methods We analyzed a total of 384 available members (probands and their two parents) from 128 unrelated Chinese families presenting with bilateral sensorineural HL, in which previous screening had found no mutations with the GJB2, SLC26A4, and MT‐RNR1 genes. We used a targeted genomic enrichment platform to simultaneously capture exons, splicing sites, and immediate flanking intron sequences of 127 known deafness genes. Sanger sequencing was used to identify probands and their two parents segregating causative variants in the candidate gene. Results We observed that two heterozygous de novo WFS1 mutations in exon 8: c.2051C>T (p.A684V) and c.2590G>A (p.E864K) in five families. The two de novo WFS1 mutations were found in 3.9% (5/128) of sporadic HL patients. We found that four of the five patients had the same de novo p.A684V mutation, and their audiograms showed symmetrical bilateral and profound sensorineural hearing impairments at all frequencies, but only the proband with de novo p.E864K mutation demonstrated significantly bilateral moderate low–mid frequency sensorineural HL. Our data suggest that this WFS1 p.A684V is likely to be a de novo mutational hot spot. Conclusions We found 3.9% (5/128) of sporadic NSHL is caused by de novo WFS1 mutations. Our data provide that the de novo p.E864K mutation is first identified and de novo p.A684V mutation is likely to be a mutational hot spot in WFS1. It is the first study to highlight that WFS1 gene with the two de novo mutations has been indicated to classify the distinct hearing impairment phenotypes. Furthermore, de novo p.A684V serves as a WFS1 mutational hot spot that was found in the Chinese population with sporadic childhood NSHL, and our study also provides pointers toward the necessity for sequencing of asymptomatic parents of a sporadic case with an apparent dominant pathogenic variant

    Astragalus membranaceus (Fisch.) Bunge repairs intestinal mucosal injury induced by LPS in mice

    No full text
    Abstract Background Astragalus membranaceus (Fisch.) Bunge is one of the most widely used traditional Chinese herbal medicines. It is used as immune stimulant, tonic, antioxidant, hepatoprotectant, diuretic, antidiabetic, anticancer, and expectorant. The purpose of the study was to investigate the curative effects of the decoction obtained from Astragalus membranaceus root in intestinal mucosal injury induced by LPS in mice. An LPS-induced intestinal mucosal injury mice model was applied in the study. Methods The mice were post-treated with Astragalus membranaceus decoction (AMD) for 4 days after 3 days LPS induction. ELISA kit was used to detect the content of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4,IL-6 and IL-8 in the serum of each group mice. The morphological changes in intestinal mucosa at the end of the experiments were observed. Both VH (villus height) and CD (crypt depth) were measured using H&E-stained sections. Results There were significant differences in IL-1β, IL-4,IL-6, IL-8 and TNF-α levels in AMD-treated group on the 7th day compared to the controls group. The VH was lower in duodenum, jejunum and the ileum in LPS-treated mice compared to the control animals. Similarly, there was also decrease in V/C. Compared to the control mice, for AMD-treated mice, VH and CD had no significantly differences. Conclusions Astragalus membranaceus reduced intestinal mucosal damage and promoted tissue repair by inhibiting the expression of inflammatory cytokine
    corecore